Simulation on an Advanced Double-Sided Cooling Flip-Chip Packaging with Diamond Material for Gallium Oxide Devices
Abstract
:1. Introduction
2. Modeling of Wire Bonding and Single-Sided Cooling Flip-Chip Packaging
3. Double-Sided Cooling Flip-Chip Packaging
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Higashiwaki, M.; Sasaki, K.; Kuramata, A.; Masui, T.; Yamakoshi, S. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β- Ga2O3 (010) substrates. Appl. Phys. Lett. 2012, 100, 13504. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Kamimura, T.; Wong, M.H.; Krishnamurthy, D.; Kuramata, A.; Masui, T.; Yamakoshi, S. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β- Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 2013, 103, 123511. [Google Scholar] [CrossRef]
- Wong, M.H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett. 2016, 37, 212–215. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 11301. [Google Scholar] [CrossRef]
- Wong, M.H.; Higashiwaki, M. Vertical β- Ga2O3 power transistors: A review. IEEE Trans. Electron Devices 2020, 67, 3925–3937. [Google Scholar] [CrossRef]
- Zhou, H.; Si, M.; Alghamdi, S.; Qiu, G.; Yang, L.; Peide, D.Y. High-Performance Depletion/Enhancement-ode β- Ga2O3 on Insulator (GOOI) Field-Effect Transistors with Record Drain Currents of 600/450 mA/mm. IEEE Electron Device Lett. 2017, 38, 103–106. [Google Scholar] [CrossRef]
- McCandless, J.P.; Moser, N.A.; Green, A.J.; Mahalingam, K.; Crespo, A.; Hendricks, N.; Howe, B.M.; Tetlak, S.E.; Leedy, K.; Fitch, R.C.; et al. Recessed-Gate Enhancement-Mode β- Ga2O3 MOSFETs. IEEE Electron Device Lett. 2018, 39, 67–70. [Google Scholar]
- Green, A.J.; Chabak, K.D.; Baldini, M.; Moser, N.; Gilbert, R.; Fitch, R.C.; Wagner, G.; Galazka, Z.; Mccandless, J.; Crespo, A.; et al. β- Ga2O3 MOSFETs for Radio Frequency Operation. IEEE Electron Device Lett. 2017, 38, 790–793. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, Y.; Fu, X.; Dun, S.; Sun, Z.; Liu, H.; Zhou, X.; Song, X.; Dang, K.; Liang, S.; et al. Progress of ultra-wide bandgap Ga2O3 semiconductor materials in power MOSFETs. IEEE Trans. Power Electron. 2020, 35, 5157–5179. [Google Scholar]
- Wong, M.H.; Murakami, H.; Kumagai, Y.; Higashiwaki, M. Enhancement-Mode β- Ga2O3 Current Aperture Vertical MOSFETs with N-Ion-Implanted Blocker. IEEE Electron Device Lett. 2020, 41, 296–299. [Google Scholar] [CrossRef]
- Kamimura, T.; Nakata, Y.; Wong, M.H.; Higashiwaki, M. Normally-off Ga2O3 MOSFETs with unintentionally nitrogen-doped channel layer grown by plasma-assisted molecular beam epitaxy. IEEE Electron Device Lett. 2019, 40, 1064–1067. [Google Scholar] [CrossRef]
- Guo, L.; Luan, S.; Zhang, H.; Yuan, L.; Zhang, Y.; Jia, R. Analytical Model and Structure of the Multilayer Enhancement-Mode β- Ga2O3 Planar MOSFETs. IEEE Trans. Electron Devices 2022, 69, 682–689. [Google Scholar] [CrossRef]
- Kim, S.H.; Shoemaker, D.; Chatterjee, B.; Green, A.J.; Chabak, K.D.; Heller, E.R.; Liddy, K.J.; Jessen, G.H.; Graham, S.; Choi, S. Thermally-Aware Layout Design of β- Ga2O3 Lateral MOSFETs. IEEE Trans. Electron Devices 2022, 69, 1251–1257. [Google Scholar] [CrossRef]
- Montgomery, R.H.; Zhang, Y.; Yuan, C.; Kim, S.; Shi, J.; Itoh, T.; Mauze, A.; Kumar, S.; Speck, J.; Graham, S. Thermal management strategies for gallium oxide vertical trench-fin MOSFETs. J. Appl. Phys. 2021, 129, 085301. [Google Scholar] [CrossRef]
- Chatterjee, B.; Li, W.; Nomoto, K.; Xing, H.G.; Choi, S. Thermal design of multi-fin Ga2O3 vertical transistors. Appl. Phys. Lett. 2021, 119, 103502. [Google Scholar] [CrossRef]
- Chatterjee, B.; Zeng, K.; Nordquist, C.D.; Singisetti, U.; Choi, S. Device-level thermal management of gallium oxide field-effect transistors. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 2352–2365. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, Y.; Montgomery, R.; Kim, S.; Shi, J.; Mauze, A.; Itoh, T.; Speck, J.S.; Graham, S. Modeling and analysis for thermal management in gallium oxide field-effect transistors. J. Appl. Phys. 2020, 127, 154502. [Google Scholar] [CrossRef]
- Kim, S.; Zhang, Y.; Yuan, C.; Montgomery, R.; Mauze, A.; Shi, J.; Farzana, E.; Speck, J.S.; Graham, S. Thermal Management of β- Ga2O3 Current Aperture Vertical Electron Transistors. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 1171–1176. [Google Scholar] [CrossRef]
Type | Structure | Size (mm3) | ρ (kg/m3) | λ/(W/m·K) | C (J/kg·K) |
---|---|---|---|---|---|
Wire bonding packaging | Si sub | 0.4 × 0.4 × 0.15 | 2329 | 131 | 700 |
Al2O3 | 1.5 × 1.5 × 0.2 | 3965 | 35 | 730 | |
60Sn-40Pb solder | 1.5 × 1.5 × 0.05 | 9000 | 50 | 150 | |
Cu | 2 × 2 × 0.1 | 8960 | 400 | 385 | |
Plastic mold | 2.5 × 2.5 × 0.8 | 2700 | 0.2 | 900 | |
Copper wire | d = 20 μm | 8960 | 400 | 385 | |
Flip-chip packaging | Si sub | 0.4 × 0.4 × 0.15 | 2329 | 131 | 700 |
Al2O3 | 1.5 × 1.5 × 0.2 | 3965 | 35 | 730 | |
60Sn-40Pb solder | 1.5 × 1.5 × 0.05 | 9000 | 50 | 150 | |
Cu | 2 × 2 × 0.1 | 8960 | 400 | 385 | |
Plastic mold | 2.5 × 2.5 × 0.8 | 2700 | 0.2 | 900 | |
Underfill epoxy | 0.08 | 2700 | 5 | 900 | |
Copper pillar | r = 20 μm, h = 99 μm | 8960 | 400 | 385 |
Packaging Model | Maximum Temperature/°C |
---|---|
Conventional wire bonding | 115 |
Conventional single-sided cooling FC | 110 |
The enhanced double-sided cooling FC | 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, H.; Wang, D.; Li, W.; Liu, D.; Deng, B.; Qu, X. Simulation on an Advanced Double-Sided Cooling Flip-Chip Packaging with Diamond Material for Gallium Oxide Devices. Micromachines 2024, 15, 98. https://doi.org/10.3390/mi15010098
Guan H, Wang D, Li W, Liu D, Deng B, Qu X. Simulation on an Advanced Double-Sided Cooling Flip-Chip Packaging with Diamond Material for Gallium Oxide Devices. Micromachines. 2024; 15(1):98. https://doi.org/10.3390/mi15010098
Chicago/Turabian StyleGuan, He, Dong Wang, Wentao Li, Duo Liu, Borui Deng, and Xiang Qu. 2024. "Simulation on an Advanced Double-Sided Cooling Flip-Chip Packaging with Diamond Material for Gallium Oxide Devices" Micromachines 15, no. 1: 98. https://doi.org/10.3390/mi15010098