Construction of MoS2-ReS2 Hybrid on Ti3C2Tx MXene for Enhanced Microwave Absorption
Abstract
:1. Introduction
2. Experimental Details
2.1. Preparation of Ti3C2Tx MXene
2.2. Preparation of MXene/MoS2-ReS2
2.3. Evaluation of Properties
3. Results and Discussion
3.1. Structure Analysis
3.2. Electromagnetic Parameters
3.3. Microwave Absorption Performance
3.4. Electromagnetic Wave Response Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boes, A.; Chang, L.; Langrock, C.; Yu, M.; Zhang, M.; Lin, Q.; Lončar, M.; Fejer, M.; Bowers, J.; Mitchell, A. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 2023, 379, eabj4396. [Google Scholar] [CrossRef]
- Lv, H.; Yang, Z.; Liu, B.; Wu, G.; Lou, Z.; Fei, B.; Wu, R. A flexible electromagnetic wave-electricity harvester. Nat. Commun. 2021, 12, 834. [Google Scholar] [CrossRef]
- Shi, T.; Jin, L.; Han, L.; Tang, M.; Xu, H.; Qiu, C. Dispersion-engineered, broadband, wide-angle, polarization-independent microwave metamaterial absorber. IEEE Trans. Antennas Propag. 2021, 69, 229–238. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, S.Y.; Zhang, Y.; Park, S.J.; Gu, J. Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 2023, e2303104. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhu, Q.; Liu, Y.; Zhang, Y.; Jia, Z.; Wu, G. Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 2023, 15, 137. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zheng, Q.; Wang, S.P.; Tian, Y.Z.; Gong, W.Q.; Gao, F.; Qiu, J.J.; Li, L.; Yang, S.H.; Cao, M.S. Multifunctional organic-inorganic hybrid Perovskite microcrystalline engineering and electromagnetic response switching multi-band devices. Adv. Mater. 2023, 35, e2300015. [Google Scholar] [CrossRef]
- Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M.K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C.M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450. [Google Scholar] [CrossRef]
- Li, B.; Wang, F.; Wang, K.; Qiao, J.; Xu, D.; Yang, Y.; Zhang, X.; Lyu, L.; Liu, W.; Liu, J. Metal sulfides based composites as promising efficient microwave absorption materials: A review. J. Mater. Sci. Technol. 2022, 104, 244–268. [Google Scholar] [CrossRef]
- Gai, L.; Zhao, H.; Wang, F.; Wang, P.; Liu, Y.; Han, X.; Du, Y. Advances in core—Shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 2022, 15, 9410–9439. [Google Scholar] [CrossRef]
- Lv, H.; Yang, Z.; Pan, H.; Wu, R. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946. [Google Scholar] [CrossRef]
- Song, Q.; Ye, F.; Kong, L.; Shen, Q.; Han, L.; Feng, L.; Yu, G.; Pan, Y.; Li, H. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, D.; Yu, J.; Zhao, Q.; Yuan, X.; Liu, Y.; Guo, S. Two-dimensional transition metal dichalcogenides based composites for microwave absorption applications: A review. J. Phys. Energy 2023, 5, 12001. [Google Scholar] [CrossRef]
- Wu, Z.; Yao, X.; Xing, Y. A review of nitrogen-doped graphene aerogel in electromagnetic wave absorption. Micromachines 2023, 14, 1762. [Google Scholar] [CrossRef] [PubMed]
- Chand, K.; Zhang, X.; Chen, Y. Recent progress in MXene and graphene based nanocomposites for microwave absorption and electromagnetic interference shielding. Arab. J. Chem. 2022, 15, 104143. [Google Scholar] [CrossRef]
- Guan, X.; Yang, Z.; Zhou, M.; Yang, L.; Peymanfar, R.; Aslibeiki, B.; Ji, G. 2D MXene nanomaterials: Synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 2022, 3, 2200102. [Google Scholar] [CrossRef]
- Chang, M.; Li, Q.; Jia, Z.; Zhao, W.; Wu, G. Tuning microwave absorption properties of Ti3C2Tx MXene-based materials: Component optimization and structure modulation. J. Mater. Sci. Technol. 2023, 148, 150–170. [Google Scholar] [CrossRef]
- He, P.; Cao, M.S.; Cao, W.Q.; Yuan, J. Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 2021, 13, 115. [Google Scholar] [CrossRef]
- Kallumottakkal, M.; Hussein, M.I.; Iqbal, M.Z. Recent progress of 2D nanomaterials for application on microwave absorption: A comprehensive study. Front. Mater. 2021, 8, 633079. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, R.; Zhang, Y.; Liu, B.; Fu, Q.; Zhao, H.; Wang, Y. Gradient hierarchical hollow heterostructures of Ti3C2Tx@rGO@MoS2 for efficient microwave absorption. ACS Appl. Mater. Interfaces 2023, 15, 32803–32813. [Google Scholar] [CrossRef]
- Wang, G.; Li, C.; Estevez, D.; Xu, P.; Peng, M.; Wei, H.; Qin, F. Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 2023, 15, 152. [Google Scholar] [CrossRef]
- Liu, Z.; Cui, Y.; Li, Q.; Zhang, Q.; Zhang, B. Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties. J. Colloid Interface Sci. 2022, 607, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Wan, Y.; Wu, Z.; Wang, J.; Jiao, S.; Liu, L. Multilayer ultrathin MXene@ AgNW@ MoS2 composite film for high-efficiency electromagnetic shielding. ACS Appl. Mater. Interfaces 2023, 15, 5787–5797. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Liu, Z.; Li, Q.; Zhao, K.; Ahmad, M.; Liu, P.; Zhang, Q.; Zhang, B. Preparation of MoS2/MXene/NC porous composite microspheres with wrinkled surface and their microwave absorption performances. ACS Appl. Mater. Interfaces 2023, 15, 41720–41731. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ma, K.; Xu, X.; Shangguan, C.; Lv, J.; Zhu, S.; Jiao, S.; Wang, J. MoS2-ReS2 heterojunctions from a bimetallic co-chamber feeding atomic layer deposition for ultrasensitive miRNA-21 detection. ACS Appl. Mater. Interfaces 2020, 12, 29074–29084. [Google Scholar] [CrossRef] [PubMed]
- Man, P.; Srolovitz, D.; Zhao, J.; Ly, T.H. Functional grain boundaries in two-dimensional transition-metal dichalcogenides. Acc. Chem. Res. 2021, 54, 4191–4202. [Google Scholar] [CrossRef]
- Wadhwa, R.; Agrawal, A.V.; Kushavah, D.; Mushtaq, A.; Pal, S.K.; Kumar, M. Investigation of charge transport and band alignment of MoS2-ReS2 heterointerface for high performance and self-driven broadband photodetection. Appl. Surf. Sci. 2021, 569, 150949. [Google Scholar] [CrossRef]
- Sadeghi, R.; Sharifi, A.; Orlowska, M.; Huynen, I. Investigation of microwave absorption performance of CoFe2O4/NiFe2O4/carbon fiber composite coated with polypyrrole in X-band frequency. Micromachines 2020, 11, 809. [Google Scholar] [CrossRef]
- He, P.; Cao, M.; Shu, J.; Cai, Y.; Wang, X.; Zhao, Q.; Yuan, J. Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. ACS Appl. Mater. Interfaces 2019, 11, 12535–12543. [Google Scholar] [CrossRef]
- Huang, L.; Ai, L.; Wang, M.; Wang, S.; Jiang, J. Hierarchical MoS2 nanosheets integrated Ti3C2 MXenes for electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 965–976. [Google Scholar] [CrossRef]
- Lv, J.; Yang, J.; Jiao, S.; Huang, P.; Ma, K.; Wang, J.; Xu, X.; Liu, L. Ultrathin quasibinary heterojunctioned ReS2/MoS2 film with controlled adhesion from a bimetallic co-feeding atomic layer deposition. ACS Appl. Mater. Interfaces 2020, 12, 43311–43319. [Google Scholar] [CrossRef]
- Wu, R.; Qi, M.; Zhao, Q.; Huang, Y.; Zhou, Y.; Xu, X. Anomalous polarization pattern evolution of Raman modes in few-layer ReS2 by angle-resolved polarized Raman spectroscopy. Nanoscale 2022, 14, 1896–1905. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Yu, L.; Xiang, Z.; Liu, Z.; Deng, B.; Cui, E.; Shi, Z.; Li, X.; Lu, W. Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 2021, 172, 506–515. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Xing, Y.; Liu, L. Construction of MoS2-ReS2 Hybrid on Ti3C2Tx MXene for Enhanced Microwave Absorption. Micromachines 2023, 14, 1996. https://doi.org/10.3390/mi14111996
Xu X, Xing Y, Liu L. Construction of MoS2-ReS2 Hybrid on Ti3C2Tx MXene for Enhanced Microwave Absorption. Micromachines. 2023; 14(11):1996. https://doi.org/10.3390/mi14111996
Chicago/Turabian StyleXu, Xiaoxuan, Youqiang Xing, and Lei Liu. 2023. "Construction of MoS2-ReS2 Hybrid on Ti3C2Tx MXene for Enhanced Microwave Absorption" Micromachines 14, no. 11: 1996. https://doi.org/10.3390/mi14111996
APA StyleXu, X., Xing, Y., & Liu, L. (2023). Construction of MoS2-ReS2 Hybrid on Ti3C2Tx MXene for Enhanced Microwave Absorption. Micromachines, 14(11), 1996. https://doi.org/10.3390/mi14111996