Cinnamate-Intercalated Layered Yttrium Hydroxide: UV Light-Responsive Switchable Material
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis of Layered Yttrium Hydroxides Intercalated with Trans-Cinnamate Anions
3.2. Synthesis of Layered Yttrium Hydroxides Intercalated with Cis-Cinnamate Anions
3.3. UV-Induced Transformation of Trans-Cinnamate-Intercalated LYH
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pathem, B.K.; Claridge, S.A.; Zheng, Y.B.; Weiss, P.S. Molecular switches and motors on surfaces. Annu. Rev. Phys. Chem. 2013, 64, 605–630. [Google Scholar] [CrossRef] [PubMed]
- Baroncini, M.; Groppi, J.; Corra, S.; Silvi, S.; Credi, A. Light-Responsive (Supra)Molecular Architectures: Recent Advances. Adv. Opt. Mater. 2019, 7, 1900392. [Google Scholar] [CrossRef]
- Feringa, B.L. In control of motion: From molecular switches to molecular motors. Acc. Chem. Res. 2001, 34, 504–513. [Google Scholar] [CrossRef]
- Castiglioni, F.; Danowski, W.; Perego, J.; Leung, F.K.C.; Sozzani, P.; Bracco, S.; Wezenberg, S.J.; Comotti, A.; Feringa, B.L. Modulation of porosity in a solid material enabled by bulk photoisomerization of an overcrowded alkene. Nat. Chem. 2020, 12, 595–602. [Google Scholar] [CrossRef]
- Natali, M.; Giordani, S. Molecular switches as photocontrollable “smart” receptors. Chem. Soc. Rev. 2012, 41, 4010–4029. [Google Scholar] [CrossRef] [PubMed]
- Jan Van Der Molen, S.; Liljeroth, P. Charge transport through molecular switches. J. Phys. Condens. Matter 2010, 22, 133001. [Google Scholar] [CrossRef] [PubMed]
- Gust, D.; Moore, T.A.; Moore, A.L. Molecular switches controlled by light. Chem. Commun. 2006, 60, 1169–1178. [Google Scholar] [CrossRef]
- Li, H.; Martinez, M.R.; Perry, Z.; Zhou, H.C.; Falcaro, P.; Doblin, C.; Lim, S.; Hill, A.J.; Halstead, B.; Hill, M.R. A Robust Metal–Organic Framework for Dynamic Light-Induced Swing Adsorption of Carbon Dioxide. Chem. Eur. J. 2016, 22, 11176–11179. [Google Scholar] [CrossRef]
- Murakami, H.; Kawabuchi, A.; Kotoo, K.; Kunitake, M.; Nakashima, N. A Light-Driven Molecular Shuttle Based on a Rotaxane. J. Am. Chem. Soc. 1997, 119, 7605–7606. [Google Scholar] [CrossRef]
- Collin, J.-P.; Sauvage, J.-P. Transition Metal-complexed Catenanes and Rotaxanes as Light-driven Molecular Machines Prototypes. Chem. Lett. 2005, 34, 742–747. [Google Scholar] [CrossRef]
- Abellán, G.; Coronado, E.; Martí-Gastaldo, C.; Ribera, A.; Jordá, J.L.; García, H. Photo-switching in a hybrid material made of magnetic layered double hydroxides intercalated with azobenzene molecules. Adv. Mater. 2014, 26, 4156–4162. [Google Scholar] [CrossRef]
- Abellán, G.; Jordá, J.L.; Atienzar, P.; Varela, M.; Jaafar, M.; Gómez-Herrero, J.; Zamora, F.; Ribera, A.; García, H.; Coronado, E. Stimuli-responsive hybrid materials: Breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule. Chem. Sci. 2015, 6, 1949–1958. [Google Scholar] [CrossRef]
- Li, W.; Yan, D.; Gao, R.; Lu, J.; Wei, M.; Duan, X. Recent advances in stimuli-responsive photofunctional materials based on accommodation of chromophore into layered double hydroxide nanogallery. J. Nanomater. 2013, 2013, 586462. [Google Scholar] [CrossRef]
- Yapryntsev, A.D.; Baranchikov, A.E.; Ivanov, V.K. Layered rare-earth hydroxides: A new family of anion-exchangeable layered inorganic materials. Russ. Chem. Rev. 2020, 89, 629–666. [Google Scholar] [CrossRef]
- Yan, D.; Wei, M. (Eds.) Photofunctional Layered Materials; Structure and Bonding Book Series; Springer International Publishing: Cham, Switzerland, 2015; Volume 166, ISBN 9783319169903. [Google Scholar]
- Strimaite, M.; Harman, C.L.G.; Duan, H.; Wang, Y.; Davies, G.-L.; Williams, G.R. Layered terbium hydroxides for simultaneous drug delivery and imaging. Dalt. Trans. 2021, 50, 10275–10290. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-I.; Lee, E.-S.; Byeon, S.-H. Assembly of Layered Rare-Earth Hydroxide Nanosheets and SiO2 Nanoparticles to Fabricate Multifunctional Transparent Films Capable of Combinatorial Color Generation. Adv. Funct. Mater. 2012, 22, 3562–3569. [Google Scholar] [CrossRef]
- Clampitt, B.H.; Callis, J.W. Photochemical isomerization of cinnamic acid in aqueous solutions. J. Phys. Chem. 1962, 66, 201–204. [Google Scholar] [CrossRef]
- Kim, H.; Gang, B.; Jung, H.; Byeon, S.H. Cinnamate intercalated-layered yttrium hydroxide: A potential hybrid UV filter. J. Solid State Chem. 2019, 269, 233–238. [Google Scholar] [CrossRef]
- Mohsin, S.M.N.; Hussein, M.Z.; Sarijo, S.H.; Fakurazi, S.; Arulselvan, P.; Hin, T.-Y.Y. Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application. Chem. Cent. J. 2013, 7, 26. [Google Scholar] [CrossRef]
- Li, Y.; Tang, L.; Ma, X.; Wang, X.; Zhou, W.; Bai, D. Synthesis and characterization of Zn-Ti layered double hydroxide intercalated with cinnamic acid for cosmetic application. J. Phys. Chem. Solids 2017, 107, 62–67. [Google Scholar] [CrossRef]
- Timár, Z.; Varga, G.; Szabados, M.; Csankó, K.; Alapi, T.; Forano, C.; Prevot, V.; Sipos, P.; Pálinkó, I. Structural insight into the photoinduced E→Z isomerisation of cinnamate embedded in ZnAl and MgAl layered double hydroxides. J. Mol. Struct. 2020, 1219, 128561. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, M.; Dai, C.; Zou, C.; Yang, Z.; Wu, X.; Liu, Y.; Wu, Y.; Fang, S.; Lv, W. Investigation of Novel Triple-Responsive Wormlike Micelles. Langmuir 2017, 33, 4319–4327. [Google Scholar] [CrossRef] [PubMed]
- Saleh, N.; Bufaroosha, M.S.; Moussa, Z.; Bojesomo, R.; Al-Amodi, H.; Al-Ahdal, A. Encapsulation of Cinnamic Acid by Cucurbit[7]uril for Enhancing Photoisomerization. Molecules 2020, 25, 3702. [Google Scholar] [CrossRef] [PubMed]
- Valim, J.; Kariuki, B.M.; King, J.; Jones, W. Photoactivity of cinnamate-intercalates of layered double hydroxides. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 1992, 211, 271–281. [Google Scholar] [CrossRef]
- Kameshima, Y.; Nakada, A.; Isobe, T.; Nakajima, A.; Okada, K. The effect of UV radiation on cinnamate/layered double hydroxide (LDH) composites. J. Ceram. Soc. Jpn. 2013, 121, 303–307. [Google Scholar] [CrossRef]
- Feng, P.; Wang, X.; Zhao, Y.; Fang, D.C.; Yang, X. Energy transfer between rare earths in layered rare-earth hydroxides. RSC Adv. 2018, 8, 3592–3598. [Google Scholar] [CrossRef]
- Pereira, C.C.L.; Almeida, M.; Marçalo, J.; Monteiro, B.; Pereira, L.C.J.; Coutinho, J.T.; Coronado, E.; Baldoví, J.J.; Gaita-Ariño, A. Magnetic Properties of the Layered Lanthanide Hydroxide Series YxDy8−x(OH)20Cl4·6H2O: From Single Ion Magnets to 2D and 3D Interaction Effects. Inorg. Chem. 2015, 54, 1949–1957. [Google Scholar] [CrossRef]
- Abellán, G.; Espallargas, G.M.; Lorusso, G.; Evangelisti, M.; Coronado, E. Layered gadolinium hydroxides for low-temperature magnetic cooling. Chem. Commun. 2015, 51, 14207–14210. [Google Scholar] [CrossRef]
- Ogawa, M.; Kaiho, H. Homogeneous precipitation of uniform hydrotalcite particles. Langmuir 2002, 18, 4240–4242. [Google Scholar] [CrossRef]
- Yapryntsev, A.; Abdusatorov, B.; Yakushev, I.; Svetogorov, R.; Gavrikov, A.; Rodina, A.; Fatyushina, Y.; Baranchikov, A.; Zubavichus, Y.; Ivanov, V. Eu-Doped layered yttrium hydroxides sensitized by a series of benzenedicarboxylate and sulphobenzoate anions. Dalt. Trans. 2019, 48, 6111–6122. [Google Scholar] [CrossRef]
- Carvalho Filho, M.A.S.; Fernandes, N.S.; Fertonani, F.L.; Ionashiro, M. A thermal behaviour study of solid-state cinnamates of the latter trivalent lanthanides and yttrium(III). Thermochim. Acta 2003, 398, 93–99. [Google Scholar] [CrossRef]
- Moskalenko, E.; Sadovnikov, A.; Baranchikov, A.; Goldt, A.; Kozik, V.; Ivanov, V. Synthesis of Nanocrystalline Titania via Microwave-Assisted Homogeneous Hydrolysis Under Hydrothermal Conditions. Curr. Microw. Chem. 2014, 1, 81–86. [Google Scholar] [CrossRef]
- Yapryntsev, A.D.; Baranchikov, A.E.; Skogareva, L.S.; Goldt, A.E.; Stolyarov, I.P.; Ivanova, O.S.; Kozik, V.V.; Ivanov, V.K. High-yield microwave synthesis of layered Y2(OH)5NO3·xH2O materials. CrystEngComm 2015, 17, 2667–2674. [Google Scholar] [CrossRef]
- Feng, Z.; Xiao, D.; Liu, Z.; Hou, G.; Xu, J. “X Factor” in the Structure and Anion Exchange of Layered Yttrium Hydroxides. J. Phys. Chem. C 2021, 125, 7251–7258. [Google Scholar] [CrossRef]
- Geng, F.; Xin, H.; Matsushita, Y.; Ma, R.; Tanaka, M.; Izumi, F.; Iyi, N.; Sasaki, T. New layered rare-earth hydroxides with anion-exchange properties. Chem. Eur. J. 2008, 14, 9255–9260. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Zhao, N.; Xia, Z. Hydrothermal synthesis of Mg-Al layered double hydroxides (LDHs) from natural brucite and Al(OH)3. Mater. Res. Bull. 2012, 47, 3897–3901. [Google Scholar] [CrossRef]
- Benito, P.; Guinea, I.; Labajos, F.M.; Rives, V. Microwave-assisted reconstruction of Ni, Al hydrotalcite-like compounds. J. Solid State Chem. 2008, 181, 987–996. [Google Scholar] [CrossRef]
- Zhao, M.R.; Qi, Z.L.; Chen, F.X.; Yue, X.X. Kinetics of non-isothermal decomposition of cinnamic acid. Russ. J. Phys. Chem. A 2014, 88, 1081–1084. [Google Scholar] [CrossRef]
- Allen, S.D.M.; Almond, M.J.; Bruneel, J.L.; Gilbert, A.; Hollins, P.; Mascetti, J. Photodimerization of trans-cinnamic acid and its derivatives: A study by vibrational microspectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2000, 56, 2423–2430. [Google Scholar] [CrossRef]
- Yapryntsev, A.D.; Skogareva, L.S.; Gol’dt, A.E.; Baranchikov, A.E.; Ivanov, V.K. Synthesis of a peroxo derivative of layered yttrium hydroxide. Russ. J. Inorg. Chem. 2015, 60, 1027–1033. [Google Scholar] [CrossRef]
- Li, Z.J.; Cai, L.; Mei, R.F.; Dong, J.W.; Li, S.Q.; Yang, X.Q.; Zhou, H.; Yin, T.P.; Ding, Z.T. A highly efficient transformation of cis- to trans-cinnamic acid derivatives by iodine. Tetrahedron Lett. 2015, 56, 7197–7200. [Google Scholar] [CrossRef]
- Salum, M.L.; Erra-Balsells, R. High purity cis-cinnamic acid preparation for studying physiological role of trans-cinnamic and cis-cinnamic acids in higher plants. Environ. Control Biol. 2013, 51, 1–10. [Google Scholar] [CrossRef]
- Hanai, K.; Kuwae, A.; Takai, T.; Senda, H. A comparative vibrational and NMR study of cis-cinnamic acid polymorphs and trans-cinnamic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2001, 57, 513–519. [Google Scholar] [CrossRef]
- Hindocha, S.A.; McIntyre, L.J.; Fogg, A.M. Precipitation synthesis of lanthanide hydroxynitrate anion exchange materials, Ln2(OH)5NO3·H2O (Ln = Y, Eu–Er). J. Solid State Chem. 2009, 182, 1070–1074. [Google Scholar] [CrossRef]
- Nakagawa, I.; Walter, J.L. Optically active crystal vibrations of the alkali-metal nitrates. J. Chem. Phys. 1969, 51, 1389–1397. [Google Scholar] [CrossRef]
- Socrates, G. IR and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley and Sons, Ltd.: Chichester, UK, 2001; ISBN 9780470093078. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A, 6th ed.; Wiley: Hoboken, NJ, USA, 2009; ISBN 9780471743392. [Google Scholar]
- Mcintyre, L.J.; Jackson, L.K.; Fogg, A.M. Ln2(OH)5NO3·xH2O (Ln = Y, Gd-Lu): A Novel Family of Anion Exchange Intercalation Hosts. Chem. Mater. 2008, 20, 335–340. [Google Scholar] [CrossRef]
- Fogg, A.M.; Williams, G.R.; Chester, R.; O’Hare, D. A novel family of layered double hydroxides—[MAl4(OH)12](NO3)2·xH2O (M = Co, Ni, Cu, Zn). J. Mater. Chem. 2004, 14, 2369–2371. [Google Scholar] [CrossRef]
- Newman, S.P.; Jones, W. Comparative Study of Some Layered Hydroxide Salts Containing Exchangeable Interlayer Anions. J. Solid State Chem. 1999, 148, 26–40. [Google Scholar] [CrossRef]
- Xu, M.; Wei, M. Layered Double Hydroxide-Based Catalysts: Recent Advances in Preparation, Structure, and Applications. Adv. Funct. Mater. 2018, 28, 1802943. [Google Scholar] [CrossRef]
- Song, L.; Shi, W.; Lu, C. Confinement effect in layered double hydroxide nanoreactor: Improved optical sensing selectivity. Anal. Chem. 2016, 88, 8188–8193. [Google Scholar] [CrossRef]
- Gu, Q.; Su, F.; Ma, S.; Sun, G.; Yang, X. Controllable luminescence of layered rare-earth hydroxide composites with a fluorescent molecule: Blue emission by delamination in formamide. Chem. Commun. 2015, 51, 2514–2517. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Su, F.; Ma, L.; Ma, S.; Sun, G.; Yang, X. Intercalation of coumaric acids into layered rare-earth hydroxides: Controllable structure and photoluminescence properties. J. Mater. Chem. C 2015, 3, 4742–4750. [Google Scholar] [CrossRef]
- Shi, W.; Lin, Y.; Zhang, S.; Tian, R.; Liang, R.; Wei, M.; Evans, D.G.; Duan, X. Study on UV-shielding mechanism of layered double hydroxide materials. Phys. Chem. Chem. Phys. 2013, 15, 18217–18222. [Google Scholar] [CrossRef]
- Adam, N.; Mohd Ghazali, S.A.I.S.; Dzulkifli, N.N.; Hak, C.R.C.; Sarijo, S.H. Intercalations and characterization of zinc/aluminium layered double hydroxide-cinnamic acid. Bull. Chem. React. Eng. Catal. 2019, 14, 165–172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teplonogova, M.A.; Yapryntsev, A.D.; Baranchikov, A.E.; Ivanov, V.K. Cinnamate-Intercalated Layered Yttrium Hydroxide: UV Light-Responsive Switchable Material. Micromachines 2023, 14, 1791. https://doi.org/10.3390/mi14091791
Teplonogova MA, Yapryntsev AD, Baranchikov AE, Ivanov VK. Cinnamate-Intercalated Layered Yttrium Hydroxide: UV Light-Responsive Switchable Material. Micromachines. 2023; 14(9):1791. https://doi.org/10.3390/mi14091791
Chicago/Turabian StyleTeplonogova, Maria A., Alexey D. Yapryntsev, Alexander E. Baranchikov, and Vladimir K. Ivanov. 2023. "Cinnamate-Intercalated Layered Yttrium Hydroxide: UV Light-Responsive Switchable Material" Micromachines 14, no. 9: 1791. https://doi.org/10.3390/mi14091791
APA StyleTeplonogova, M. A., Yapryntsev, A. D., Baranchikov, A. E., & Ivanov, V. K. (2023). Cinnamate-Intercalated Layered Yttrium Hydroxide: UV Light-Responsive Switchable Material. Micromachines, 14(9), 1791. https://doi.org/10.3390/mi14091791