Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies
Abstract
1. Introduction
2. Principle of Operation
3. Materials and Methodology
4. Results and Discussions
4.1. Model Validation
4.2. Parametric FEA Analysis of Thin Diaphragms/Plates
4.3. Harmonic Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weigold, J.W.; Brosnihan, T.J.; Bergeron, J.; Zhang, X. A MEMS condenser microphone for consumer applications. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Istanbul, Turkey, 22–26 January 2006; Volume 2006, pp. 86–89. [Google Scholar] [CrossRef]
- Tiete, J.; Domínguez, F.; da Silva, B.; Touhafi, A.; Steenhaut, K. MEMS microphones for wireless applications. In Wireless MEMS Networks and Applications; Woodhead Publishing: Soston, UK, 2017; pp. 177–195. [Google Scholar] [CrossRef]
- Mallik, S.; Chowdhury, D.; Chttopadhyay, M. Development and performance analysis of a low-cost MEMS microphone-based hearing aid with three different audio amplifiers. Innov. Syst. Softw. Eng. 2019, 15, 17–25. [Google Scholar] [CrossRef]
- Zargarpour, N.; Zarifi, M.H. A piezoelectric micro-electromechanical microphone for implantable hearing aid applications. Microsyst. Technol. 2015, 21, 893–902. [Google Scholar] [CrossRef]
- Zinserling, B. Silicon-based MEMS Microphone For Automotive Applications. MicroNano News 2007, 8–11. Available online: http://www.onboard-technology.com/pdf_febbraio2007/020705.pdf (accessed on 28 August 2023).
- Scheeper, P.R.; van der Donk, A.G.H.; Olthuis, W.; Bergveld, P. A review of silicon microphones. Sens. Actuators A Phys. 1994, 44, 1–11. [Google Scholar] [CrossRef]
- Zawawi, S.A.; Hamzah, A.A.; Majlis, B.Y.; Mohd-Yasin, F. A review of MEMS capacitive microphones. Micromachines 2020, 11, 484. [Google Scholar] [CrossRef]
- Minervini, A.D. Method of Manufacturing a Microphone. U.S. Patent 7,434,305, 14 October 2008. [Google Scholar]
- Mallik, S.; Chowdhury, D.; Chttopadhyay, M. Development of a Power Efficient Hearing Aid Using MEMS Microphone. In Proceedings of the Social Transformation–Digital Way: 52nd Annual Convention of the Computer Society of India, CSI 2017, Kolkata, India, 19–21 January 2018; Revised Selected Papers. Springer: Singapore, 2018; pp. 369–375. [Google Scholar] [CrossRef]
- Pinjare, S.L.; Veda, S.N.; Saurabh, K.S.; Roshan, K.R.; Sagar, M.S. A MEMS condenser microphone for consumer applications. In Proceedings of the COMSOL Conference, Bangalore, India, 4-5 November 2011; pp. 1–5. [Google Scholar]
- Barlian, A.A.; Park, W.-T.; Mallon, J.R.; Rastegar, A.J.; Pruitt, B.L. Review: Semiconductor piezoresistance for microsystems. Proc. IEEE 2009, 97, 513–552. [Google Scholar] [CrossRef] [PubMed]
- Calero, D.; Paul, S.; Gesing, A.; Alves, F.; Cordioli, J.A. A technical review and evaluation of implantable sensors for hearing devices. BioMed. Eng. Online 2018, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Van Heeren, H.; Salomon, P. MEMS—Recent Developments, Future Directions. In Wolfson School of Mechanical and Manufacturing Engineering; Loughborough University: Loughborough, UK, 2007; Volume 5, pp. 1–51. [Google Scholar]
- Chan, C.K.; Lai, W.C.; Wu, M.; Wang, M.Y.; Fang, W. Design and implementation of a capacitive-type microphone with rigid diaphragm and flexible spring using the two poly silicon micromachining processes. IEEE Sensors J. 2011, 11, 2365–2371. [Google Scholar] [CrossRef]
- Malcovati, P.; Baschirotto, A. The evolution of integrated interfaces for MEMS microphones. Micromachines 2018, 9, 323. [Google Scholar] [CrossRef]
- Yasuno, Y.; Ohga, J. Temperature characteristics of electret condenser microphones. Acoust. Sci. Technol. 2006, 27, 216–224. [Google Scholar] [CrossRef]
- Belwanshi, V.; Topkar, A. Quantitative analysis of temperature effect on SOI piezoresistive pressure sensors. Microsyst. Technol. 2017, 23, 2719–2725. [Google Scholar] [CrossRef]
- Belwanshi, V.; Topkar, A. Quantitative Analysis of MEMS Piezoresistive Pressure Sensors Based on Wide Band Gap Materials. IETE J. Res. 2019, 68, 667–677. [Google Scholar] [CrossRef]
- Belwanshi, V. Analytical modeling to estimate the sensitivity of MEMS technology-based piezoresistive pressure sensor. J. Comput. Electron. 2021, 20, 668–680. [Google Scholar] [CrossRef]
- Petersen, K.E. Silicon as a Mechanical Material. Proc. IEEE 1982, 70, 420–457. [Google Scholar] [CrossRef]
- Eaton, W.P.; Smith, J.H. Micromachined pressure sensors: Review and recent developments. Smart Mater. Struct. 1997, 6, 530. [Google Scholar] [CrossRef]
- Shah, M.A.; Shah, I.A.; Lee, D.G.; Hur, S. Design approaches of MEMS microphones for enhanced performance. J. Sens. 2019, 2019, 9294528. [Google Scholar] [CrossRef]
- Duvigneau, F.; Koch, S.; Orszulik, R.; Woschke, E.; Gabbert, U. About the vibration modes of square plate-like structures. Tech. Mech. 2016, 36, 180–189. [Google Scholar] [CrossRef]
- Mohamad, N.; Iovenitti, P.; Vinay, T. Effective diaphragm area of spring-supported capacitive MEMS microphone designs. Smart Struct. Devices Syst. IV 2008, 7268, 726805. [Google Scholar] [CrossRef]
- Guguloth, G.N.; Singh, B.N.; Ranjan, V. Free vibration analysis of simply supported rectangular plates. Vibroeng. Procedia 2019, 29, 270–273. [Google Scholar] [CrossRef]
- Senjanović, I.; Tomić, M.; Vladimir, N.; Cho, D.S. Analytical solution for free vibrations of a moderately thick rectangular plate. Math. Probl. Eng. 2013, 2013, 207460. [Google Scholar] [CrossRef]
- Gibbons, C.; Miles, R.N. Design of a biomimetic directional microphone diaphragm. Am. Soc. Mech. Eng. Noise Control Acoust. Div. (Publ.) NCA 2000, 19098, 173–179. [Google Scholar] [CrossRef]
- Wang, W.J.; Lin, R.M.; Ren, Y. Design and fabrication of silicon condenser microphone using single deeply corrugated diaphragm technique. Microelectron. Int. 2003, 20, 36–40. [Google Scholar] [CrossRef]
- Menezes, J.; Kiran, K.; Schmitz, T.L. Analytical model for thin plate dynamics. In Proceedings of the ASPE 2015 Annual Meeting, Austin, TX, USA, 1–6 November 2015; pp. 571–576. [Google Scholar]
- Umale, S.; Shinde, D.S. Static And Modal Analysis of Simply Supported Rectangular Plate By Using ANSYS. Kalpa Publ. Civ. Eng. 2018, 1, 315–320. [Google Scholar] [CrossRef][Green Version]
- Shahdadi, A.H.; Hajabasi, M.A. An analytical solution for free vibration analysis of circular plates in axisymmetric modes based on the two variables refined plate theory. J. Mech. Sci. Technol. 2014, 28, 3449–3458. [Google Scholar] [CrossRef]
- Torio, G.; Segota, J. Unique Directional Properties of Dual-Diaphragm Microphones. Audio Eng. Soc. 2000, 109, 5179. [Google Scholar]
- Wu, J.H.; Liu, A.Q.; Chen, H.L. Exact solutions for free-vibration analysis of rectangular plates using Bessel functions. J. Appl. Mech. Trans. ASME 2007, 74, 1247–1251. [Google Scholar] [CrossRef]
- Nkounhawa, P.K.; Ndapeu, D.; Kenmeugne, B.; Beda, T. Analysis of the Behavior of a Square Plate in Free Vibration by FEM in Ansys. World J. Mech. 2020, 10, 11–25. [Google Scholar] [CrossRef]
- Loeppert, P.V.; Lee, S.B. SIS0NIC—The First Commercialized Mems Microphone; Knowles Electronics, LLC: Itasca, IL, USA, 2021; pp. 27–30. [Google Scholar] [CrossRef]
- Martin, D.T.; Liu, J.; Kadirvel, K.; Fox, R.M.; Sheplak, M.; Nishida, T. A micromachined dual-backplate capacitive microphone for aeroacoustic measurements. J. Microelectromechanical Syst. 2007, 16, 1289–1302. [Google Scholar] [CrossRef]
- Kabir, A.E.; Bashir, R.; Bernstein, J.; De Santis, J.; Mathews, R.; O’Boyle, J.O.; Bracken, C. High sensitivity acoustic transducers with thin p q membranes and gold back-plate. Sens. Actuators A Phys. 1999, 78, 138–142. [Google Scholar] [CrossRef]
- Hsu, P.C.; Mastrangelo, C.H.; Wise, K.D. High sensitivity polysilicon diaphragm condenser microphone. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Heidelberg, Germany, 25–29 January 1998; pp. 580–585. [Google Scholar] [CrossRef]
- Bergqvlst, J.; Rudolf, F. A New Co&mm Microphone in Siticon. Sens. Actuators A Phys. 1990, 21, 123–125. [Google Scholar]
- Bergqvist, J.; Gobet, J. Capacitive Microphone with a Surface Micromachined Backplate Using Electroplating Technology. J. Microelectromechanical Syst. 1994, 3, 69–75. [Google Scholar] [CrossRef]
- Gemelli, A.; Tambussi, M.; Fusetto, S.; Aprile, A.; Moisello, E.; Bonizzoni, E.; Malcovati, P. Recent Trends in Structures and Interfaces of MEMS Transducers for Audio Applications: A Review. Micromachines 2023, 14, 847. [Google Scholar] [CrossRef] [PubMed]
- Bao, M. Analysis and Design Principles of MEMS Devices; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Hopcroft, M.A.; Nix, W.D.; Kenny, T.W. What is the Young’s modulus of silicon? J. Microelectromechanical Syst. 2010, 19, 229–238. [Google Scholar] [CrossRef]
Materials | Stiffness Coefficient/Young’s Modulus at 25 °C (GPa) | Poisson’s Ratio | |
---|---|---|---|
Anisotropic Silicon | c11 | 165.64 | 0.27 |
c12 | 63.94 | ||
c44 | 79.51 | ||
Isotropic Silicon | 169 |
Parameters | Analytical Model | FEA Isotropic | FEA Anisotropic | % Change Isotropic | % Change Anisotropic |
---|---|---|---|---|---|
Deflection sensitivity (µm/Pa) | 1.11 × 10−4 | 1.07 × 10−4 | 9.66 × 10−5 | −3.48 | −12.81 |
Stress sensitivity (MPa/Pa) | 2.50 × 10−3 | 2.56 × 10−3 | 2.83 × 10−3 | 2.27 | 13.01 |
Critical Ratio | Deflection Coefficient d/h = coeff × (a/h)4 | Induced Stresses Coefficient Stress = coeff × (a/h)2 | Natural Frequencies f × h = coeff × (a/h)−2 | |
---|---|---|---|---|
Square (coeffsq) | 570 | 1.90 × 10−12 | 5.45 × 10−6 | 1.12 × 1010 |
Circular (coeffci) | 605 | 1.50 × 10−12 | 3.21 × 10−6 | 1.45 × 1010 |
Critical ratio | Thickness (µm) | Edge or Radius (µm) | Deflection Sensitivity (µm/Pa) | Stress Sensitivity (MPa/Pa) | Frequency (kHz) | |
---|---|---|---|---|---|---|
Square | 570 | 2.5 | 1425 | 0.025 | 0.105 | 17.24 |
Circular | 605 | 2.5 | 756.25 | 0.025 | 0.076 | 17.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belwanshi, V.; Rane, K.; Kumar, V.; Pramanick, B. Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies. Micromachines 2023, 14, 1725. https://doi.org/10.3390/mi14091725
Belwanshi V, Rane K, Kumar V, Pramanick B. Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies. Micromachines. 2023; 14(9):1725. https://doi.org/10.3390/mi14091725
Chicago/Turabian StyleBelwanshi, Vinod, Kedarnath Rane, Vibhor Kumar, and Bidhan Pramanick. 2023. "Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies" Micromachines 14, no. 9: 1725. https://doi.org/10.3390/mi14091725
APA StyleBelwanshi, V., Rane, K., Kumar, V., & Pramanick, B. (2023). Design Guidelines for Thin Diaphragm-Based Microsystems through Comprehensive Numerical and Analytical Studies. Micromachines, 14(9), 1725. https://doi.org/10.3390/mi14091725