A Flexible Supercapacitor Based on Niobium Carbide MXene and Sodium Anthraquinone-2-Sulfonate Composite Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Methods
2.2.1. Synthesis of Nb2C MXene
2.2.2. Preparation of Nb2C–AQS Composite
2.2.3. Characterization
3. Results and Discussion
3.1. Synthesis and Characterization of Nb2C–AQS Composite
3.2. Chemical Structure
3.3. Electrochemical Performance
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.; Li, L.; Yan, J.M.; Zhang, X.B. Materials Design and System Construction for Conventional and New-Concept Supercapacitors. Adv. Sci. 2017, 4, 1600382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Hu, C.; Liu, W.; Shen, G. Progress and Perspectives in Designing Flexible Microsupercapacitors. Micromachines 2021, 12, 1305. [Google Scholar] [CrossRef]
- Sung, J.; Shin, C. Recent Studies on Supercapacitors with Next-Generation Structures. Micromachines 2020, 11, 1125. [Google Scholar] [CrossRef]
- Lobinsky, A.A.; Kaneva, M.V.; Tenevich, M.I.; Popkov, V.I. Direct Synthesis of Mn3[Fe(CN)6]2·nH2O Nanosheets as Novel 2D Analog of Prussian Blue and Material for High-Performance Metal-Ion Batteries. Micromachines 2023, 14, 1083. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.N.; Xu, Y.X.; Zhang, X.C.; Li, C.Y.; Liu, Y.X.; Xiang, K.X.; Chen, H. (NH4)2Co2V10O28·16H2O/(NH4)2V10O25·8H2O heterostructure as cathode for high-performance aqueous Zn-ion batteries. J. Alloys Compd. 2022, 903, 163824. [Google Scholar] [CrossRef]
- Deng, W.N.; Li, Y.H.; Xu, D.F.; Zhou, W.; Xiang, K.X.; Chen, H. Three-dimensional hierarchically porous nitrogen-doped carbon from water hyacinth as selenium host for highperformance lithium–selenium batteries. Rare Met. 2022, 41, 3432–3445. [Google Scholar] [CrossRef]
- Li, D.J.; Guo, H.T.; Jiang, S.H.; Zeng, G.L.; Zhou, W.; Li, Z. Microstructures and electrochemical performances of TiO2-coated Mg-Zr co-doped NCM as a cathode material for lithium-ion batteries with high power and long circular life. New J. Chem. 2021, 45, 19446–19455. [Google Scholar] [CrossRef]
- Ren, L.; Wang, L.; Qin, Y.; Li, Q. High Cycle Stability of Hybridized Co(OH)2 Nanomaterial Structures Synthesized by the Water Bath Method as Anodes for Lithium-Ion Batteries. Micromachines 2022, 13, 149. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zeng, G.L.; Jin, H.T.; Jiang, S.H.; Huang, M.J.; Zhang, C.M.; Chen, H. Bio-Template Synthesis of V2O3@Carbonized Dictyophora Composites for Advanced Aqueous Zinc-Ion Batteries. Molecules 2023, 28, 2147. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.Y.; Luo, J.H.; Xiang, K.X.; Zhou, W.; Zhang, C.F. Han Chen High-performance monoclinic WO3 nanospheres with the novel NH4+ diffusion behaviors for aqueous ammonium-ion batteries. Chem. Eng. J. 2023, 458, 141381. [Google Scholar] [CrossRef]
- Xiao, J.L.; Li, H.L.; Zhang, H.; He, S.J.; Zhang, Q.; Liu, K.M.; Jiang, S.H.; Duan, G.G.; Zhang, K. Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges. J. Bioresour. Bioprod. 2022, 7, 245–269. [Google Scholar] [CrossRef]
- Yang, C.; Li, P.; Wei, Y.; Wang, Y.; Jiang, B.; Wu, W. Preparation of nitrogen and phosphorus doped porous carbon from watermelon peel as supercapacitor electrode material. Micromachines 2023, 14, 1003. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Lyu, Z.; Zhang, Q.; Lee, T.H.; Kang, T.K.; Sohn, M.; Shen, L.; Kim, D.H.; Kang, D.J. High-Performance Flexible Energy Storage Devices Based on Graphene Decorated with Flower-Shaped MoS2 Heterostructures. Micromachines 2023, 14, 297. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Gan, H.; Huang, Y.; Zhu, M.; Pei, Z.; Li, H.; Deng, S.; Liu, F.; Zhi, C. Boron element nanowires electrode for supercapacitors. Adv. Energy Mater. 2018, 8, 1703117. [Google Scholar] [CrossRef]
- Han, Y.; Ge, Y.; Chao, Y.; Wang, C.; Wallace, G.G. Recent progress in 2D materials for flexible supercapacitors. J. Energy Chem. 2018, 27, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Shi, H.Z.; Shen, C.; Huan, L.; He, M.X.; Chen, M. Heteroatom-bridged pillar[4]quinone: Evolutionary active cathode material for lithium-ion battery using density functional theory. J. Chem. Sci. 2021, 133, 1–11. [Google Scholar] [CrossRef]
- Wu, Q.; Sun, Y.; Bai, H.; Shi, G. High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties. Phys. Chem. Chem. Phys. 2011, 13, 11193–11198. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, H.W.; Yi, H.; Wang, X.F.; Yan, X.R.; Guo, Z.H. Anthraquinone on porous carbon nanotubes with improved supercapacitor performance. J. Phys. Chem. C 2014, 118, 8262–8270. [Google Scholar] [CrossRef]
- Brousse, K.; Martin, C.; Brisse, A.L.; Lethien, C.; Simon, P.; Taberna, P.L.; Brousse, T. Anthraquinone modification of microporous carbide derived carbon films for on-chip micro-supercapacitors applications. Electrochim. Acta 2017, 246, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Shi, R.; Li, H.; Han, C.; Wu, M.; Wong, C.P.; Kang, F.; Li, B. Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon 2017, 127, 459–468. [Google Scholar] [CrossRef]
- Boota, M.; Chen, C.; Bécuwe, M.; Miao, L.; Gogotsi, Y. Pseudocapacitance and excellent cyclability of 2,5-dimethoxy-1,4-benzoquinone on graphene. Energy Environ. Sci. 2016, 9, 2586–2594. [Google Scholar] [CrossRef]
- Shi, R.Y.; Han, C.P.; Duan, H.; Xu, L.; Zhou, D.; Li, H.F.; Li, J.Q.; Kang, F.Y.; Li, B.H.; Wang, G.X. Redox-active organic sodium anthraquinone-2-sulfonate (AQS) anchored on reduced graphene oxide for high-performance supercapacitors. Adv. Energy Mater. 2018, 8, 1802088. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Zhang, W.J.; Li, G.; Li, C.L.; Qin, X.H. Ultra-simple and green two-step synthesis of sodium anthraquinone-2-sulfonate composite graphene (AQS/rGO) hydrogels for supercapacitor electrode materials. J. Alloys Compd. 2021, 862, 158472. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [Green Version]
- Kosnan, M.A.; Azam, M.A.; Safie, N.E.; Munawar, R.F.; Takasaki, A. Recent Progress of Electrode Architecture for MXene/MoS2 Supercapacitor: Preparation Methods and Characterizations. Micromachines 2022, 13, 1837. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.P.; Xu, B.; Ouyang, C.Y.; Zhang, Y.; Yang, S.Y. Investigations on Nb2C monolayer as promising anode material for Li or non-Li ion batteries from first-principles calculations. RSC Adv. 2016, 6, 27467–27474. [Google Scholar] [CrossRef]
- Xin, Y.; Yu, Y.X. Possibility of bare and functionalized niobium carbide MXenes for electrode materials of supercapacitors and field emitters. Mater. Des. 2017, 130, 512–520. [Google Scholar] [CrossRef]
- Lin, H.; Gao, S.; Dai, C.; Chen, Y.; Shi, J.L. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017, 139, 16235–16247. [Google Scholar] [CrossRef]
- Naguib, M.; Halim, J.; Lu, J.; Cook, K.M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969. [Google Scholar] [CrossRef] [PubMed]
- Mashtalir, O.; Lukatskaya, M.R.; Zhao, M.Q.; Barsoum, M.W.; Gogotsi, Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 2015, 27, 3501–3506. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.X.; Yang, Z.; Wu, L.N.; Wang, J.M.; Liu, X.M. Studies on improved stability and electrochemical activity of titanium carbide MXene-polymer nanocomposites. J. Electroanal. Chem. 2021, 900, 115708. [Google Scholar] [CrossRef]
- Han, Y.Q.; Wang, T.Q.; Li, T.X.; Gao, X.X.; Li, W.; Zhang, Z.; Wang, Y.; Zhang, X.Q. Preparation and electrochemical performances of graphene/polypyrrole nanocomposite with anthraquinone-graphene oxide as active oxidant. Carbon 2017, 119, 111–118. [Google Scholar] [CrossRef]
- Xu, C.; Cao, Y.; Kumar, R.; Wu, X.; Wang, X.; Scott, K. A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J. Mater. Chem. 2011, 21, 11359–11364. [Google Scholar] [CrossRef]
- Duan, G.G.; Xiao, J.L.; Chen, L.; Zhang, C.M.; Jian, S.J.; He, S.J.; Wang, F. Zinc gluconate derived porous carbon electrode assisted high rate and long cycle performance supercapacitor. J. Energy Storage 2023, 67, 107559. [Google Scholar] [CrossRef]
- Cao, L.H.; Li, H.L.; Liu, X.L.; Liu, S.W.; Zhang, L.; Xu, W.H.; Yang, H.Q.; Hou, H.Q.; He, S.J.; Zhao, Y. Nitrogen, sulfur co-doped hierarchical carbon encapsulated in graphene with ‘‘sphere-in-layer” interconnection for high-performance supercapacitor. J. Colloid Interface Sci. 2021, 599, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Cao, L.H.; Zhang, H.J.; Tian, Z.W.; Zhang, Q.; Yang, F.; Yang, H.Q.; He, S.J.; Jiang, S.H. Intertwined carbon networks derived from Polyimide/Cellulose composite as porous electrode for symmetrical supercapacitor. J. Colloid Interface. Sci. 2022, 609, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.C.; Guo, X.T.; Yang, L.; Wang, T.Y.; Zhang, M.H.; Duan, G.G.; Liu, X.H.; Li, Y.W. Synthetic melanin facilitates MnO supercapacitors with high specific capacitance and wide operation potential window. Polymer 2021, 235, 124276. [Google Scholar] [CrossRef]
- Wang, F.; Chen, L.; Li, H.L.; Duan, G.G.; He, S.J.; Zhang, L.; Zhang, G.Y.; Zhou, Z.P.; Jiang, S.H. N-doped honeycomb-like porous carbon towards high-performance supercapacitor. Chin. Chem. Lett. 2020, 31, 1986–1990. [Google Scholar] [CrossRef]
- Duan, G.G.; Zhao, L.Y.; Chen, L.; Wang, F.; He, S.J.; Jiang, S.H.; Zhang, Q. ZnCl2 regulated flax-based porous carbon fibers for supercapacitors with good cycling stability. New J. Chem. 2021, 45, 22602–22609. [Google Scholar] [CrossRef]
- Yang, J.J.; Li, H.L.; He, S.J.; Du, H.J.; Liu, K.M.; Zhang, C.M.; Jiang, S.H. Facile Electrodeposition of NiCo2O4 Nanosheets on Porous Carbonized Wood for Wood-Derived Asymmetric Supercapacitors. Polymers 2022, 14, 2521. [Google Scholar] [CrossRef]
- Duan, G.G.; Zhang, H.; Zhang, C.M.; Jiang, S.H.; Hou, H.Q. High mass-loading α-Fe2O3 nanoparticles anchored on nitrogen-doped wood carbon for high-energy-density supercapacitor. Chin. Chem. Lett. 2023. [Google Scholar] [CrossRef]
- Wang, G.X.; Babaahmadi, V.; He, N.; Liu, Y.; Pan, Q.; Montazer, M.; Gao, W. Wearable supercapacitors on polyethylene terephthalate fabrics with good wash fastness and high flexibility. J. Power Sources 2017, 367, 34–41. [Google Scholar] [CrossRef]
- Wu, Z.; Parvez, K.; Feng, X.; Müllen, K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Z.; Zhang, L.; Liu, L.; Zhu, B.; Dong, H.; Chen, X. All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv. Mater. 2013, 25, 4035–4042. [Google Scholar] [CrossRef]
Parameters | Areal Capacitance (mF cm−2) | Scan Rate | |
---|---|---|---|
Electrode Materials | |||
Nb2C–AQS | 36.3 | 20 mV s−1 | |
Nb2C | 16.8 | 20 mV s−1 | |
Nb2C–AQS | 42.7 | 10 mV s−1 | |
Concavely bent | 48.1 | 10 mV s−1 | |
Convexly bent | 40.0 | 10 mV s−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Yang, Z.; Nie, X.; Wang, M.; Liu, X. A Flexible Supercapacitor Based on Niobium Carbide MXene and Sodium Anthraquinone-2-Sulfonate Composite Electrode. Micromachines 2023, 14, 1515. https://doi.org/10.3390/mi14081515
Wang G, Yang Z, Nie X, Wang M, Liu X. A Flexible Supercapacitor Based on Niobium Carbide MXene and Sodium Anthraquinone-2-Sulfonate Composite Electrode. Micromachines. 2023; 14(8):1515. https://doi.org/10.3390/mi14081515
Chicago/Turabian StyleWang, Guixia, Zhuo Yang, Xinyue Nie, Min Wang, and Xianming Liu. 2023. "A Flexible Supercapacitor Based on Niobium Carbide MXene and Sodium Anthraquinone-2-Sulfonate Composite Electrode" Micromachines 14, no. 8: 1515. https://doi.org/10.3390/mi14081515
APA StyleWang, G., Yang, Z., Nie, X., Wang, M., & Liu, X. (2023). A Flexible Supercapacitor Based on Niobium Carbide MXene and Sodium Anthraquinone-2-Sulfonate Composite Electrode. Micromachines, 14(8), 1515. https://doi.org/10.3390/mi14081515