Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = sodium anthraquinone-2-sulfonate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4216 KiB  
Article
Redox-Active Anthraquinone-1-Sulfonic Acid Sodium Salt-Loaded Polyaniline for Dual-Functional Electrochromic Supercapacitors
by Yi Wang, Enkai Lin, Ze Wang, Tong Feng and An Xie
Gels 2025, 11(8), 568; https://doi.org/10.3390/gels11080568 - 23 Jul 2025
Viewed by 213
Abstract
Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling [...] Read more.
Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling simultaneous energy storage and real-time visual monitoring. In this study, we report a flexible dual-functional EESD constructed using polyaniline (PANI) films doped with anthraquinone-1-sulfonic acid sodium salt (AQS), coupled with a redox-active PVA-based gel electrolyte also incorporating AQS. The incorporation of AQS into both the polymer matrix and the gel electrolyte introduces synergistic redox activity, facilitating bidirectional Faradaic reactions at the film–electrolyte interface and within the bulk gel phase. The resulting vertically aligned PANI-AQS nanoneedle films provide high surface area and efficient ion pathways, while the AQS-doped gel electrolyte contributes to enhanced ionic conductivity and electrochemical stability. The device exhibits rapid and reversible color switching from light green to deep black (within 2 s), along with a high areal capacitance of 194.2 mF·cm−2 at 1 mA·cm−2 and 72.1% capacitance retention over 5000 cycles—representing a 31.5% improvement over undoped systems. These results highlight the critical role of redox-functionalized gel electrolytes in enhancing both the energy storage and optical performance of EESDs, offering a scalable strategy for multifunctional, gel-based electrochemical systems in wearable and smart electronics. Full article
(This article belongs to the Special Issue Smart Gels for Sensing Devices and Flexible Electronics)
Show Figures

Graphical abstract

15 pages, 4357 KiB  
Article
The Effects of Aniline-Promoted Electron Shuttle-Mediated Goethite Reduction by Shewanella oneidensis MR-1 and theDegradation of Aniline
by Mengmeng Tang, Chaoyong Wang, Zaitian Dong, Qianjin Che, Zetang Wang and Yuxuan Zhu
Water 2023, 15(20), 3686; https://doi.org/10.3390/w15203686 - 21 Oct 2023
Cited by 1 | Viewed by 2090
Abstract
The biological reduction of Fe (III) is common in underground environments. This process not only affects the biogeochemical cycle of iron but also influences the migration and transformation of pollutants. Humic substances are considered effective strategies for improving the migration and transformation of [...] Read more.
The biological reduction of Fe (III) is common in underground environments. This process not only affects the biogeochemical cycle of iron but also influences the migration and transformation of pollutants. Humic substances are considered effective strategies for improving the migration and transformation of toxic substances and enhancing the bioavailability of Fe (III). In this study, the electron shuttle anthraquinone-2-sulfonate (AQS) significantly promoted the bio-reduction of Fe (III). On this basis, different concentrations of aniline were added. The research results indicate that at an aniline concentration of 3 μM, the production of Fe (II) in the reaction system was 2.51 times higher compared to the microbial reaction group alone. Furthermore, the degradation of aniline was most effective in this group. The increased consumption of sodium lactate suggests that aniline, under the mediation of AQS, promoted the metabolism of Shewanella oneidensis MR-1 cells and facilitated the involvement of more electrons in the reduction process. After the reaction, the solid mineral Fe (II)-O content increased to 41.32%. This study provides insights into the reduction mechanism of Fe (III) in the complex environment of microorganisms, iron minerals, electron shuttles, and pollutants. It aims to offer a theoretical basis for the biodegradation of aromatic hydrocarbon pollutants. Full article
Show Figures

Figure 1

9 pages, 2294 KiB  
Communication
A Flexible Supercapacitor Based on Niobium Carbide MXene and Sodium Anthraquinone-2-Sulfonate Composite Electrode
by Guixia Wang, Zhuo Yang, Xinyue Nie, Min Wang and Xianming Liu
Micromachines 2023, 14(8), 1515; https://doi.org/10.3390/mi14081515 - 28 Jul 2023
Cited by 10 | Viewed by 2321
Abstract
MXene-based composites have been widely used in electric energy storage device. As a member of MXene, niobium carbide (Nb2C) is a good electrode candidate for energy storage because of its high specific surface area and electronic conductivity. However, a pure Nb [...] Read more.
MXene-based composites have been widely used in electric energy storage device. As a member of MXene, niobium carbide (Nb2C) is a good electrode candidate for energy storage because of its high specific surface area and electronic conductivity. However, a pure Nb2C MXene electrode exhibits limited supercapacitive performance due to its easy stacking. Herein, sodium anthraquinone-2-sulfonate (AQS) with high redox reactivity was employed as a tailor to enhance the accessibility of ions and electrolyte and enhance the capacitance performance of Nb2C MXene. The resulting Nb2C–AQS composite had three-dimensional porous layered structures. The supercapacitors (SCs) based on the Nb2C–AQS composite exhibited a considerably higher electrochemical capacitance (36.3 mF cm−2) than the pure Nb2C electrode (16.8 mF cm−2) at a scan rate of 20 mV s−1. The SCs also exhibited excellent flexibility as deduced from the almost unchanged capacitance values after being subjected to bending. A capacitance retention of 99.5% after 600 cycles was observed for the resulting SCs, indicating their good cycling stability. This work proposes a surface modification method for Nb2C MXene and facilitates the development of high-performance SCs. Full article
(This article belongs to the Special Issue Nanomaterials for Micro/Nano Devices)
Show Figures

Figure 1

11 pages, 1108 KiB  
Article
A Photo-Enzymatic Cascade to Transform Racemic Alcohols into Enantiomerically Pure Amines
by Jenő Gacs, Wuyuan Zhang, Tanja Knaus, Francesco G. Mutti, Isabel W.C.E. Arends and Frank Hollmann
Catalysts 2019, 9(4), 305; https://doi.org/10.3390/catal9040305 - 27 Mar 2019
Cited by 23 | Viewed by 5580
Abstract
The consecutive photooxidation and reductive amination of various alcohols in a cascade reaction were realized by the combination of a photocatalyst and several enzymes. Whereas the photocatalyst (sodium anthraquinone-2-sulfonate) mediated the light-driven, aerobic oxidation of primary and secondary alcohols, the enzymes (various ω-transaminases) [...] Read more.
The consecutive photooxidation and reductive amination of various alcohols in a cascade reaction were realized by the combination of a photocatalyst and several enzymes. Whereas the photocatalyst (sodium anthraquinone-2-sulfonate) mediated the light-driven, aerobic oxidation of primary and secondary alcohols, the enzymes (various ω-transaminases) catalyzed the enantio-specific reductive amination of the intermediate aldehydes and ketones. The system worked in a one-pot one-step fashion, whereas the productivity was significantly improved by switching to a one-pot two-step procedure. A wide range of aliphatic and aromatic compounds was transformed into the enantiomerically pure corresponding amines via the photo-enzymatic cascade. Full article
Show Figures

Graphical abstract

Back to TopTop