Characterization of Residual Stress in SOI Wafers by Using MEMS Cantilever Beams
Abstract
:1. Introduction
2. Mechanism Analysis of Residual Stress in SOI Wafer
3. Mechanical Theoretical Modeling
4. Experimental Test and Result Analysis
4.1. Sample Preparation and Experimental Test
4.2. The Result Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsou, C.; Fang, W. The effect of residual stresses on the deformation of semi-circular micromachined beams. J. Micromech. Microeng. 1999, 10, 34. [Google Scholar] [CrossRef]
- Jia, J.Y.; Tian, W.C. Membrane Stress Study of Micro-electromechanical System. Chin. J. Sci. Instrum. 2003, S1, 2–3. [Google Scholar]
- Guo, C.Q.; Pei, Z.L.; Fan, D.; Liu, R.D.; Gong, J.; Sun, C. Predicting multilayer film’s residual stress from its monolayers. Mater. Des. 2016, 110, 858–864. [Google Scholar] [CrossRef]
- Qian, J.; Liu, C.; Zhang, D.C.; Zhao, Y.P. Residual stresses in micro-electro-mechanical systems. J. Mech. Strength 2001, 23, 393–401. [Google Scholar]
- Chen, K.S.; Ou, K.S. Modification of curvature-based thin-film residual stress measurement for MEMS applications. J. Micromech. Microeng. 2002, 12, 917–924. [Google Scholar] [CrossRef]
- Tiberj, A.; Fraisse, B.; Blanc, C.; Contreras, S.; Camassel, J. Process-induced strain in silicon-on-insulator materials. J. Phys. Condens. Matter 2002, 14, 13411. [Google Scholar] [CrossRef]
- Bera, T.; Thakur, A.D. Determination of residual stress in MEMS cantilevers. AIP Conf. Proc. 2014, 1591, 683–684. [Google Scholar]
- Lin, C.Y.; Dai, C.L. Manufacture of Radio Frequency Micromachined Switches with Annealing. Sensors 2014, 14, 1680–1690. [Google Scholar] [CrossRef] [Green Version]
- Boominathasellarajan, S.; Saravanan, P.; Pandey, K.K.; Srihari, V.; Poswal, H.K. Study on the influence of residual stress on the mechanical characteristics of free-standing Si-membranes processed by deep reactive ion etching. Sens. Actuators A Phys. 2019, 290, 71–79. [Google Scholar] [CrossRef]
- Nelson, D.V.; Mccrickerd, J.T. Residual-stress determination through combined use of holographic interferometry and blind-hole drilling. Exp. Mech. 1986, 26, 371–378. [Google Scholar] [CrossRef]
- Steinzig, M.; Ponslet, E. Residual Stress Measurement Using the Hole Drilling Method and Laser Speckle Interferometry: Part 1. Exp. Tech. 2003, 27, 43–46. [Google Scholar] [CrossRef]
- Schajer, G.S.; Rickert, T.J. Incremental Computation Technique for Residual Stress Calculations Using the Integral Method. Exp. Mech. 2011, 51, 1217–1222. [Google Scholar] [CrossRef]
- Suterio, R.; Albertazzi, A.; Amaral, F.K. Residual stress measurement using indentation and a radial electronic speckle pattern interferometer—Recent progress. J. Strain Anal. 2006, 41, 517–524. [Google Scholar] [CrossRef]
- Mcginnis, M.J.; Pessiki, S.; Turker, H. Application of three-dimensional digital image correlation to the core-drilling method. Exp. Mech. 2005, 45, 359. [Google Scholar] [CrossRef]
- Min, Y.; Hong, M.; Xi, Z.; Jian, L. Determination of residual stress by use of phase shifting moire interferometry and hole-drilling method. Opt. Lasers Eng. 2006, 44, 68–79. [Google Scholar] [CrossRef]
- Nelson, D.V.; Makino, A.; Schmidt, T. Residual Stress Determination Using Hole Drilling and 3D Image Correlation. Exp. Mech. 2006, 46, 31–38. [Google Scholar] [CrossRef]
- Jiang, H.; Zhou, M.L.; Lu, J. A Computational Method of Residual Stress Calculation for Incremental Hole-Drilling Method Utilized Composite Materials. Mater. Sci. Forum 2015, 813, 94–101. [Google Scholar] [CrossRef]
- Dobročka, E.; Novák, P.; Búc, D.; Harmatha, L.; Murín, J. X-ray diffraction analysis of residual stresses in textured ZnO thin films. Appl. Surf. Sci. 2017, 395, 16–23. [Google Scholar] [CrossRef]
- Fu, X.; Niu, Z.; Deng, Y.; Zhang, J.; Liu, C.; Chen, G.; Li, Z.; Zhou, W. Accuracy of X-ray diffraction measurement of residual stresses in shot peened titanium alloy samples. Nondestruct. Test. Eval. 2019, 34, 164–177. [Google Scholar] [CrossRef]
- Zhu, L.-N.; Xu, B.-S.; Wang, H.-D.; Wang, C.-B. Microstructure and nanoindentation measurement of residual stress in Fe-based coating by laser cladding. J. Mater. Sci. 2012, 47, 2122–2126. [Google Scholar] [CrossRef]
- Sasaki, T.; Hane, K. Deformation of varifocal mirror with narrow frame by SOI wafer residual stress. Electron. Commun. Jpn. 2012, 95, 26–33. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.Y.; Zohar, Y. Measurements of residual stresses in thin films using micro-rotating-structures. Thin Solid Film. 1998, 335, 97–105. [Google Scholar] [CrossRef]
- Suresh, S.; Giannakopoulos, A.E. A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 1998, 46, 5755–5767. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Kwon, D. Residual stresses in DLC/Si and Au/Si systems: Application of a stress-relaxation model to the nanoindentation technique. J. Mater. Res. 2002, 17, 901–906. [Google Scholar] [CrossRef]
- Swadener, J.G.; Taljat, B.; Pharr, G.M. Measurement of residual stress by load and depth sensing indentation with spherical indenters. J. Mater. Res. 2001, 16, 2091–2102. [Google Scholar] [CrossRef]
- Xu, Z.-H.; Li, X. Influence of equi-biaxial residual stress on unloading behaviour of nanoindentation. Acta Mater. 2005, 53, 1913–1919. [Google Scholar] [CrossRef]
- Chung, G.S.; Choi, S.K.; Nam, H.D. Design, fabrication, and characteristics of microheaters with low consumption power using SDB SOI membrane and trench structures. Micromach. Microfabr. Process Technol. Devices 2001, 4601, 346–353. [Google Scholar]
- Mäkinen, J.; Suni, T. Thick-film SOI wafers: Preparation and properties. In Handbook of Silicon Based MEMS Materials and Technologies; William Andrew Publishing: Norwich, NY, USA, 2015; pp. 206–237. [Google Scholar]
- Datta, R.; Allen, L.P.; Dolan, R.P.; Jones, K.S.; Farley, M. Independent implant parameter effects on SIMOX SOI dislocation formation. Mater. Sci. Eng. B 1997, 46, 8–13. [Google Scholar] [CrossRef]
- Nie, X.; Li, J.; Lang, F. Effect of Film Thickness on Mechanical Properties of Si-based SiO2 Thin Films. Mech. Sci. Technol. Aerosp. Eng. 2019, 38, 646–651. [Google Scholar]
Mechanical Parameters | Symbol | Value |
---|---|---|
Deflection of composite cantilever beam | y1 | 307.7 μm |
Deflection of cantilever beam | y2 | 28.8 μm |
Shortened length of cantilever beam | ΔlSi | 0.337 μm |
Restrained axial force of clamped beam | FB | 28.39 N |
Restrained bending moment of clamped beam | MB | 7.28 × 10−10 N·m |
Residual stress | σ | 33.03 MPa |
Mechanical Parameters | Symbol | Value |
---|---|---|
Deflection of composite cantilever beam | y1 | 80.08 μm |
Deflection of cantilever beam | y2 | 10.1 μm |
Shortened length of cantilever beam | ΔlSi | 0.141 μm |
Restrained axial force of clamped beam | FB | 18.48 N |
Restrained bending moment of clamped beam | MB | 7.94 × 10−10 N·m |
Residual stress | σ | 31.45 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Liu, M.; Zhu, Y.; Wang, W.; Qin, X.; He, L.; Jiang, K. Characterization of Residual Stress in SOI Wafers by Using MEMS Cantilever Beams. Micromachines 2023, 14, 1510. https://doi.org/10.3390/mi14081510
Yang H, Liu M, Zhu Y, Wang W, Qin X, He L, Jiang K. Characterization of Residual Stress in SOI Wafers by Using MEMS Cantilever Beams. Micromachines. 2023; 14(8):1510. https://doi.org/10.3390/mi14081510
Chicago/Turabian StyleYang, Haotian, Min Liu, Yingmin Zhu, Weidong Wang, Xianming Qin, Lilong He, and Kyle Jiang. 2023. "Characterization of Residual Stress in SOI Wafers by Using MEMS Cantilever Beams" Micromachines 14, no. 8: 1510. https://doi.org/10.3390/mi14081510
APA StyleYang, H., Liu, M., Zhu, Y., Wang, W., Qin, X., He, L., & Jiang, K. (2023). Characterization of Residual Stress in SOI Wafers by Using MEMS Cantilever Beams. Micromachines, 14(8), 1510. https://doi.org/10.3390/mi14081510