Boosting the Performance of Perovskite Solar Cells through Systematic Investigation of the Annealing Effect of E-Beam Evaporated TiO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of CsPbI3-xBrx Perovskite Solar Cells
2.2. Characterization
3. Results
3.1. Morphology Properties of TiO2 Films
3.2. Photovoltaic Performance of CsPbI3-xBrx Perovskite Solar Cells
3.3. Opto-Physical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Temperature/°C | Scan Direction | Voc/V | Jsc/mA·cm−2 | FF/% | PCE/% | HI |
---|---|---|---|---|---|---|
unannealed | Forward | 0.48 | 5.28 | 17 | 0.42 | 0.61 |
Reverse | 0.76 | 8.76 | 16 | 1.08 | ||
Average | 0.61 ± 0.15 | 5.07 ± 1.49 | 17 ± 6.47 | 0.48 ± 0.18 | ||
200 | Forward | 0.74 | 10.75 | 24 | 1.90 | 0.12 |
Reverse | 0.76 | 12.96 | 22 | 2.15 | ||
Average | 0.69 ± 0.04 | 10.98 ± 2.90 | 24 ± 3.69 | 1.73 ± 0.21 | ||
300 | Forward | 0.60 | 16.65 | 29 | 2.89 | 0.13 |
Reverse | 0.76 | 16.33 | 27 | 3.32 | ||
Average | 0.78 ± 0.07 | 12.74 ± 2.18 | 26 ± 8.56 | 2.59 ± 0.40 | ||
400 | Forward | 0.74 | 16.40 | 51 | 6.24 | 0.12 |
Reverse | 0.80 | 17.66 | 50 | 7.08 | ||
Average | 0.70 ± 0.04 | 16.92 ± 1.97 | 39 ± 6.64 | 4.73 ± 1.23 | ||
450 | Forward | 0.76 | 18.20 | 55 | 7.57 | 0.10 |
Reverse | 0.80 | 18.10 | 58 | 8.43 | ||
Average | 0.78 ± 0.03 | 15.60 ± 1.74 | 42 ± 13.24 | 5.39 ± 2.15 | ||
480 | Forward | 0.83 | 18.08 | 70 | 10.49 | 0.06 |
Reverse | 0.84 | 18.33 | 73 | 11.16 | ||
Average | 0.80 ± 0.05 | 18.37 ± 0.30 | 56 ± 5.30 | 8.23 ± 1.23 | ||
500 | Forward | 0.81 | 17.10 | 55 | 7.59 | 0.16 |
Reverse | 0.83 | 18.07 | 59 | 9.00 | ||
Average | 0.79 ± 0.03 | 16.20 ± 2.31 | 54.9 ± 8.02 | 7.15 ± 1.73 |
References
- Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T.C.; Lam, Y.M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 2014, 7, 399–407. [Google Scholar] [CrossRef]
- Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S.S.; Ma, T.; et al. CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm. J. Phys. Chem. Lett. 2014, 5, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Correa-Baena, J.P.; Abate, A.; Saliba, M.; Tress, W.; Jacobsson, T.J.; Gratzel, M.; Hagfeldt, A. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 2017, 10, 710–727. [Google Scholar] [CrossRef]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Graetzel, M.; Mhaisalkar, S.; Sum, T.C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef]
- Wehrenfennig, C.; Eperon, G.E.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Adv. Mater. 2014, 26, 1584–1589. [Google Scholar] [CrossRef] [PubMed]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- NREL. Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 1 January 2023).
- Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Meng, X.; Yang, S. Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells. Adv. Energy Mater. 2018, 8, 1701883. [Google Scholar] [CrossRef]
- Yang, Z.; Babu, B.H.; Wu, S.; Liu, T.; Fang, S.; Xiong, Z.; Han, L.; Chen, W. Review on Practical Interface Engineering of Perovskite Solar Cells: From Efficiency to Stability. Sol. RRL 2019, 4, 1900257. [Google Scholar] [CrossRef]
- Choi, I.Y.; Baek, S.-D.; Takaloo, A.V.; Lee, S.Y.; Hajibabaei, A.; Kim, K.S.; Myoung, J.-M. Highly Efficient Pure-Blue Perovskite Light-Emitting Diode Leveraging CsPbBrxCl3-x/Cs4PbBrxCl6-x Nanocomposite Emissive Layer with Shallow Valence Band. Adv. Opt. Mater. 2022, 10, 2102502. [Google Scholar] [CrossRef]
- Xiao, W.; Pu, W.H.; Wang, J.W.; Wang, X.; Sun, L.; Cui, J.D.; Wang, L.G. Theoretical investigation of the structural and electronic properties of Al-decorated TiO2/perovskite interfaces. Appl. Surf. Sci. 2019, 492, 369–373. [Google Scholar] [CrossRef]
- Han, F.; Hao, G.; Wan, Z.; Luo, J.; Xia, J.; Jia, C. Bifunctional electron transporting layer/perovskite interface linker for highly efficient perovskite solar cells. Electrochim. Acta 2019, 296, 75–81. [Google Scholar] [CrossRef]
- Li, T.; Rui, Y.; Zhang, X.; Shi, J.; Wang, X.; Wang, Y.; Yang, J.; Zhang, Q. Anatase TiO2 nanorod arrays as high-performance electron transport layers for perovskite solar cells. J. Alloys Compd. 2020, 849, 156629. [Google Scholar] [CrossRef]
- Tian, J.; Li, H.; Wang, H.; Zheng, B.; Xue, Y.; Liu, X. TiO2 composite electron transport layers for planar perovskite solar cells by mixed spray pyrolysis with precursor solution incorporating TiO2 nanoparticles. Chin. Phys. B 2018, 27, 018810. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, T.-H.; Wei, Q.-Y.; Yu, S.-J.; Gao, H.; Guo, P.-C.; Li, J.-K.; Wang, Y.-X. Preparation of TiO2 electron transport layer by magnetron sputtering and its effect on the properties of perovskite solar cells. Energy Rep. 2022, 8, 3166–3175. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Wang, Y.; Wang, Q.; Liu, Z.; Geng, R.; Wang, H.; Jiang, W.; Ding, W. Improving the performance of perovskite solar cells via TiO2 electron transport layer prepared by direct current pulsed magnetron sputtering. J. Alloys Compd. 2022, 929, 167278. [Google Scholar] [CrossRef]
- Hossain, M.F.; Naka, S.; Okada, H. Annealing effect of E-beam evaporated TiO2 films and their performance in perovskite solar cells. J. Photochem. Photobiol. A Chem. 2018, 360, 109–116. [Google Scholar] [CrossRef]
- Chen, C.-M.; Hsu, Y.-C.; Cherng, S.-J. Effects of annealing conditions on the properties of TiO2/ITO-based photoanode and the photovoltaic performance of dye-sensitized solar cells. J. Alloys Compd. 2011, 509, 872–877. [Google Scholar] [CrossRef]
- Islam, S.; Bakhtiar, H.; Bidin, N.; Salim, A.A.; Riaz, S.; Krishnan, G.; Naseem, S. Crack-free high surface area silica-titania nanocomposite coating as opto-chemical sensor device. Sens. Actuators A Phys. 2018, 270, 153–161. [Google Scholar] [CrossRef]
- Fang, Z.; Guo, Y.; Fu, B.; Wei, L.; Chen, J.; Pang, L.; Wang, Z. Effect of Shear Bands Induced by Asymmetric Rolling on Microstructure and Texture Evolution of Non-Oriented 3.3% Si Steel. Materials 2020, 13, 4696. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xu, Y.; He, Y.; Jiao, H.; Yue, S.; Li, J. A quasi in-situ EBSD study of the nucleation and growth of Goss grains during primary and secondary recrystallization of a strip-cast Fe-6.5 wt% Si alloy. J. Alloys Compd. 2021, 861, 158550. [Google Scholar] [CrossRef]
- Saidaminov, M.I.; Kim, J.; Jain, A.; Quintero-Bermudez, R.; Tan, H.; Long, G.; Tan, F.; Johnston, A.; Zhao, Y.; Voznyy, O.; et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 2018, 3, 648–654. [Google Scholar] [CrossRef]
- Shyma, A.P.; Sellappan, R. Computational Probing of Tin-Based Lead-Free Perovskite Solar Cells: Effects of Absorber Parameters and Various Electron Transport Layer Materials on Device Performance. Materials 2022, 15, 7859. [Google Scholar] [CrossRef]
- Takaloo, A.V.; Lee, H.J.; Park, T.H.; Dongale, T.D.; Kim, Y.U.; Choi, D.H.; Kim, T.G. Haze-enhanced ZnO/Ag/ZnO nanomesh electrode for flexible, high-efficiency indoor organic photovoltaics. J. Power Sources 2021, 515, 230589. [Google Scholar] [CrossRef]
- Park, J.W.; Takaloo, A.V.; Kim, S.H.; Son, K.R.; Kang, D.Y.; Kang, S.K.; Lee, C.B.; Choi, H.; Shim, J.W.; Kim, T.G. Surface-modified ultra-thin indium zinc oxide films with tunable work function for efficient hole transport in flexible indoor organic photovoltaics. J. Power Sources 2021, 489, 229507. [Google Scholar] [CrossRef]
- Baig, H.; Kanda, H.; Asiri, A.M.; Nazeeruddin, M.K.; Mallick, T. Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems. Sustain. Energy Fuels 2020, 4, 4301–4302. [Google Scholar] [CrossRef]
- Pu, W.; Xiao, W.; Wang, J.; Li, X.-W.; Wang, L. Stress and Defect Effects on Electron Transport Properties at SnO2/Perovskite Interfaces: A First-Principles Insight. ACS Omega 2022, 7, 16187–16196. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, W.; Guo, H.; Zhao, Y.; Shan, X.; Jin, K.; Tian, H.; Zhao, Q.; Yu, D.; Lu, X.; et al. Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells. Chem. Mater. 2016, 28, 802–812. [Google Scholar] [CrossRef]
- Wang, J.-L.; Chen, C.-K.; Li, X.; Jiang, M.-Y.; Hu, X.-J. Influences of grain size and microstructure on optical properties of microcrystalline diamond films. Chin. Phys. B 2020, 29, 018103. [Google Scholar] [CrossRef]
- Touam, T.; Atoui, M.; Hadjoub, I.; Chelouche, A.; Boudine, B.; Fischer, A.; Boudrioua, A.; Doghmane, A. Effects of dip-coating speed and annealing temperature on structural, morphological and optical properties of sol-gel nano-structured TiO2 thin films. Eur. Phys. J. Appl. Phys. 2014, 67, 30302. [Google Scholar] [CrossRef]
- He, Q.; Zhang, H.; Han, S.; Xing, Y.; Li, Y.; Zhang, X.; Wang, R. Improvement of nanopore structure SnO2 electron-transport layer for carbon-based CsPbIBr2 perovskite solar cells. Mater. Sci. Semicond. Process. 2022, 148, 106787. [Google Scholar] [CrossRef]
T/°C | Unannealed | 200 | 300 | 400 | 450 | 480 | 500 |
---|---|---|---|---|---|---|---|
small-size grains | 72.5% | 76.0% | 79.1% | 88.0% | 83.7% | 79.2% | 76.0% |
large-size grains | 23.4% | 20.8% | 18.9% | 10.2% | 14.9% | 20.1% | 21.8% |
voids | 4% | 3.2% | 2.0% | 1.8% | 1.5% | 0.7% | 2.2% |
T/°C | Voc/V | Jsc/mA·cm−2 | FF/% | Rs/Ω | PCE/% |
---|---|---|---|---|---|
unannealed | 0.76 | 8.76 | 16 | 2296.41 | 1.08 |
200 | 0.76 | 12.96 | 22 | 661.64 | 2.15 |
300 | 0.76 | 16.33 | 27 | 554.71 | 3.32 |
400 | 0.80 | 17.66 | 50 | 120.81 | 7.08 |
450 | 0.80 | 18.10 | 58 | 104.13 | 8.43 |
480 | 0.84 | 18.33 | 73 | 53.79 | 11.16 |
500 | 0.83 | 18.07 | 59 | 162.90 | 9.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, T.; Chen, D.; Li, T.; Chou, X.; Wang, X.; Tang, Z.; Zhang, F.; Huang, J.; Guo, K.; Takaloo, A.V. Boosting the Performance of Perovskite Solar Cells through Systematic Investigation of the Annealing Effect of E-Beam Evaporated TiO2. Micromachines 2023, 14, 1095. https://doi.org/10.3390/mi14061095
Xue T, Chen D, Li T, Chou X, Wang X, Tang Z, Zhang F, Huang J, Guo K, Takaloo AV. Boosting the Performance of Perovskite Solar Cells through Systematic Investigation of the Annealing Effect of E-Beam Evaporated TiO2. Micromachines. 2023; 14(6):1095. https://doi.org/10.3390/mi14061095
Chicago/Turabian StyleXue, Tao, Dandan Chen, Ting Li, Xingxing Chou, Xiao Wang, Zhenyu Tang, Fanghui Zhang, Jin Huang, Kunping Guo, and Ashkan Vakilipour Takaloo. 2023. "Boosting the Performance of Perovskite Solar Cells through Systematic Investigation of the Annealing Effect of E-Beam Evaporated TiO2" Micromachines 14, no. 6: 1095. https://doi.org/10.3390/mi14061095
APA StyleXue, T., Chen, D., Li, T., Chou, X., Wang, X., Tang, Z., Zhang, F., Huang, J., Guo, K., & Takaloo, A. V. (2023). Boosting the Performance of Perovskite Solar Cells through Systematic Investigation of the Annealing Effect of E-Beam Evaporated TiO2. Micromachines, 14(6), 1095. https://doi.org/10.3390/mi14061095