Field-Effect Transistors Based on Single-Layer Graphene and Graphene-Derived Materials
Abstract
1. Introduction
2. Properties of the Graphenic Materials
3. Materials and Methods
3.1. Processes for Growing the Three Types of Graphenic Materials
3.2. GFET Microfabrication
3.2.1. Technological Workflow
3.2.2. Source-Drain Channel Functionalization
4. GFET Operating Principle
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALD | atomic layer deposition |
CNW | carbon nanowalls |
CVD | chemical vapor deposition |
FET | field-effect transistor |
FWHM | full width at half maximum |
GDM | graphene-derived material |
GFET | graphenic-based field-effect transistor |
GNW | graphene/graphhite nanowalls |
HMDS | hexamethyldisilazane |
MOSFET | metal-oxide-semiconductor |
NCG | nanocrystalline graphite |
NPs | nanoparticles |
PECVD | plasma-enhanced chemical vapor deposition |
SEM | scanning electron microscopy |
SLG | single-layer graphene |
VG | vertical graphene |
References
- Wang, D.; Noël, V.; Piro, B. Electrolytic Gated Organic Field-Effect Transistors for Application in Biosensors—A Review. Electronics 2016, 5, 9. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Anal. Lett. 2001, 34, 635–659. [Google Scholar] [CrossRef][Green Version]
- Matsumoto, A.; Miyahara, Y. Current and emerging challenges of field effect transistor based bio-sensing. Nanoscale 2013, 5, 10702–10718. [Google Scholar] [CrossRef] [PubMed]
- Akinwande, D.; Huyghebaert, C.; Wang, C.H.; Serna, M.I.; Goossens, S.; Li, L.J.; Wong, H.S.P.; Koppens, F.H.L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. [Google Scholar] [CrossRef]
- Liu, S.; Guo, X. Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Mater. 2012, 4, e23. [Google Scholar] [CrossRef][Green Version]
- Farmani, H.; Farmani, A.; Nguyen, T.A. 12—Graphene-based field effect transistor (GFET) as nanobiosensors. In Silicon-Based Hybrid Nanoparticles; Thomas, S., Nguyen, T.A., Ahmadi, M., Yasin, G., Joshi, N., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 269–275. [Google Scholar] [CrossRef]
- Srivastava, A.; Dwivedi, N.; Dhand, C.; Khan, R.; Sathish, N.; Gupta, M.; Kumar, R.; Kumar, S. Potential of graphene-based materials to combat COVID-19: Properties, perspectives, and prospects. Mater. Today Chem. 2020, 18, 100385. [Google Scholar] [CrossRef] [PubMed]
- Danielson, E.; Sontakke, V.A.; Porkovich, A.J.; Wang, Z.; Kumar, P.; Ziadi, Z.; Yokobayashi, Y.; Sowwan, M. Graphene based field-effect transistor biosensors functionalized using gas-phase synthesized gold nanoparticles. Sens. Actuators B Chem. 2020, 320, 128432. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Shahzad, K.; Ateeq, H.; Aslam, I.; Aftab, S.; Azam, S.; Kamran, M.; Khan, M.F. An effectual enhancement to the electrical conductivity of graphene FET by silver nanoparticles. Diam. Relat. Mater. 2020, 106, 107833. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Z.; Lu, H. Structure design and properties investigation of Bi2O2Se/graphene van der Waals heterojunction from first-principles study. Surf. Interfaces 2022, 33, 102289. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, Y.; Xu, Z.; Yang, M.; Zhang, L.; Yin, L.; Chai, S.; Wang, G.; Zhang, L.; Cai, X. Effects of Ni-decorated reduced graphene oxide nanosheets on the microstructural evolution and mechanical properties of Sn-3.0Ag-0.5Cu composite solders. Intermetallics 2022, 150, 107683. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Ruoff, R.S.; Bielawski, C.W. From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angew. Chem. Int. Ed. 2010, 49, 9336–9344. [Google Scholar] [CrossRef] [PubMed]
- Wallace, P.R. The Band Theory of Graphite. Phys. Rev. 1947, 71, 622–634. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef][Green Version]
- Simionescu, O.G.; Popa, R.C.; Avram, A.; Dinescu, G. Thin films of nanocrystalline graphene/graphite: An overview of synthesis and applications. Plasma Process. Polym. 2020, 17, 1900246. [Google Scholar] [CrossRef]
- Simionescu, O.G.; Anghel, E.; Tutunaru, O.; Pachiu, C.; Gavrilă, R.; Avram, A.; Buiu, O.; Dinescu, G. Correlation between the Growth Process and Film Properties of RF-PECVD Grown Nanocrystalline Graphite/Graphene. In Proceedings of the Solar Energy Conversion in Communities; Visa, I., Duta, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 399–410. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, X.; Fu, W. Review of Vertical Graphene and its Applications. ACS Appl. Mater. Interfaces 2021, 13, 9561–9579. [Google Scholar] [CrossRef]
- Mohanty, N.; Berry, V. Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett. 2008, 8, 4469–4476. [Google Scholar] [CrossRef]
- Kwong Hong Tsang, D.; Lieberthal, T.J.; Watts, C.; Dunlop, I.E.; Ramadan, S.; del Rio Hernandez, A.E.; Klein, N. Chemically Functionalised Graphene FET Biosensor for the Label-free Sensing of Exosomes. Sci. Rep. 2019, 9, 13946. [Google Scholar] [CrossRef][Green Version]
- Pollok, N.E.; Rabin, C.; Smith, L.; Crooks, R.M. Orientation-Controlled Bioconjugation of Antibodies to Silver Nanoparticles. Bioconjug. Chem. 2019, 30, 3078–3086. [Google Scholar] [CrossRef]
- Yáñez-Sedeño, P.; Pingarrón, J.M. Gold nanoparticle-based electrochemical biosensors. Anal. Bioanal. Chem. 2005, 382, 884–886. [Google Scholar] [CrossRef]
- Mehr, W.; Dabrowski, J.; Scheytt, J.C.; Lippert, G.; Xie, Y.H.; Lemme, M.C.; Ostling, M.; Lupina, G. Vertical Graphene Base Transistor. IEEE Electron Device Lett. 2012, 33, 691–693. [Google Scholar] [CrossRef][Green Version]
- Mao, S.; Yu, K.; Chang, J.; Steeber, D.A.; Ocola, L.E.; Chen, J. Direct Growth of Vertically-oriented Graphene for Field-Effect Transistor Biosensor. Sci. Rep. 2013, 3, 1696. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wan, X.; Chen, K.; Xu, J. Interface Engineering for CVD Graphene: Current Status and Progress. Small 2014, 10, 4443–4454. [Google Scholar] [CrossRef] [PubMed]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, K.; Sikes, K.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef][Green Version]
- Du, X.; Skachko, I.; Barker, A.; Andrei, E.Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491–495. [Google Scholar] [CrossRef][Green Version]
- Seol, J.H.; Jo, I.; Moore, A.L.; Lindsay, L.; Aitken, Z.H.; Pettes, M.T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; et al. Two-Dimensional Phonon Transport in Supported Graphene. Science 2010, 328, 213–216. [Google Scholar] [CrossRef][Green Version]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Kumar, R.; Pérez del Pino, A.; Sahoo, S.; Singh, R.K.; Tan, W.K.; Kar, K.K.; Matsuda, A.; Joanni, E. Laser processing of graphene and related materials for energy storage: State of the art and future prospects. Prog. Energy Combust. Sci. 2022, 91, 100981. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef][Green Version]
- Novoselov, K.S. Nobel Lecture: Graphene: Materials in the Flatland. Rev. Mod. Phys. 2011, 83, 837–849. [Google Scholar] [CrossRef]
- Tincu, B.; Demetrescu, I.; Avram, A.; Tucureanu, V.; Matei, A.; Tutunaru, O.; Burinaru, T.; Comanescu, F.; Voitincu, C.; Avram, M. Performance of single layer graphene obtain by chemical vapor deposition on gold electrodes. Diam. Relat. Mater. 2019, 98, 107510. [Google Scholar] [CrossRef]
- Tincu, B.; Avram, M.; Avram, A.; Tutunaru, O.; Tucureanu, V.; Matei, A.; Burinaru, T.; Comanescu, F.; Demetrescu, I. Progress and control in development of single layer graphene membranes. Vacuum 2020, 175, 109269. [Google Scholar] [CrossRef]
- Tincu, B.; Avram, M.; Avram, A.; Tucureanu, V.; Mihai, G.; Popa, M.; Osiceanu, P.; Demetrescu, I.; Enachescu, M. Investigation of plasma-assisted functionalization of pristine single layer graphene. Chem. Phys. Lett. 2022, 789, 139330. [Google Scholar] [CrossRef]
- Simionescu, O.G.; Romanitan, C.; Albu, C.; Pachiu, C.; Vasile, E.; Djourelov, N.; Tutunaru, O.; Stoian, M.C.; Kusko, M.; Radoi, A. Properties of Nitrogen-Doped Nano-Crystalline Graphite Thin Films and Their Application as Electrochemical Sensors. J. Electrochem. Soc. 2020, 167, 126510. [Google Scholar] [CrossRef]
- Simionescu, O.G.; Pachiu, C.; Ionescu, O.; Dumbrăvescu, N.; Buiu, O.; Popa, R.C.; Avram, A.; Dinescu, G. Nanocrystalline graphite thin layers for low-strain, high-sensitivity piezoresistive sensing. Rev. Adv. Mater. Sci. 2020, 59, 306–313. [Google Scholar] [CrossRef]
- Aldrigo, M.; Dragoman, M.; Iordanescu, S.; Avram, A.; Simionescu, O.G.; Parvulescu, C.; El Ghannudi, H.; Montori, S.; Nicchi, L.; Xavier, S.; et al. Tunable 24-GHz Antenna Arrays Based on Nanocrystalline Graphite. IEEE Access 2021, 9, 122443–122456. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef][Green Version]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed][Green Version]
Thin Film | Temperature (°C) | Time (min) | RF Power (W) | Pressure (Pa) | Precursors |
---|---|---|---|---|---|
SLG | 1080 | 60 | − | 400 | Ar:H2:CH4 |
GNW | 750 | 60 | 300 | 40 | Ar:CH4 |
bulk-NCG | 890 | 120 | 100 | 200 | H2:CH4 |
V | V | V | ||||
---|---|---|---|---|---|---|
(A V) | (cm V s) | (A V) | (cm V s) | (A V) | (cm V s) | |
SLG | ||||||
GNW | ||||||
bulk-NCG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simionescu, O.-G.; Avram, A.; Adiaconiţă, B.; Preda, P.; Pârvulescu, C.; Năstase, F.; Chiriac, E.; Avram, M. Field-Effect Transistors Based on Single-Layer Graphene and Graphene-Derived Materials. Micromachines 2023, 14, 1096. https://doi.org/10.3390/mi14061096
Simionescu O-G, Avram A, Adiaconiţă B, Preda P, Pârvulescu C, Năstase F, Chiriac E, Avram M. Field-Effect Transistors Based on Single-Layer Graphene and Graphene-Derived Materials. Micromachines. 2023; 14(6):1096. https://doi.org/10.3390/mi14061096
Chicago/Turabian StyleSimionescu, Octavian-Gabriel, Andrei Avram, Bianca Adiaconiţă, Petruţa Preda, Cătălin Pârvulescu, Florin Năstase, Eugen Chiriac, and Marioara Avram. 2023. "Field-Effect Transistors Based on Single-Layer Graphene and Graphene-Derived Materials" Micromachines 14, no. 6: 1096. https://doi.org/10.3390/mi14061096
APA StyleSimionescu, O.-G., Avram, A., Adiaconiţă, B., Preda, P., Pârvulescu, C., Năstase, F., Chiriac, E., & Avram, M. (2023). Field-Effect Transistors Based on Single-Layer Graphene and Graphene-Derived Materials. Micromachines, 14(6), 1096. https://doi.org/10.3390/mi14061096