Electrically Inspired Flexible Electrochemical Film Power Supply for Long-Term Epidermal Sensors
Abstract
:1. Introduction
2. Methods and Materials
3. Result and Discussion
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Pharr, M.; Salvatore, G.A. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano 2017, 11, 9614–9635. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.Y.; Bao, Z. Second Skin Enabled by Advanced Electronics. Adv. Sci. 2019, 6, 1900186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axisa, F.; Schmitt, P.M.; Gehin, C.; Delhomme, G.; McAdams, E.; Dittmar, A. Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 325–336. [Google Scholar] [CrossRef]
- Liu, G.Y.; Tan, Q.L.; Kou, H.R.; Zhang, L.; Wang, J.Q.; Lv, W.; Dong, H.L.; Xiong, J.J. A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things. Sensors 2018, 18, 1400. [Google Scholar] [CrossRef] [Green Version]
- Fu, K.; Zhou, J.; Wu, H.U.; Su, Z.Q. Fibrous self-powered sensor with high stretchability for physiological information monitoring. Nano Energy 2021, 88, 106258. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Yamamoto, D.; Takada, M.; Naito, H.; Arie, T.; Akita, S.; Takei, K. Efficient Skin Temperature Sensor and Stable Gel-Less Sticky ECG Sensor for a Wearable Flexible Healthcare Patch. Adv. Healthc. Mater. 2017, 6, 1700495. [Google Scholar] [CrossRef] [PubMed]
- Bariya, M.; Nyein, H.Y.Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160–171. [Google Scholar] [CrossRef]
- Pu, Z.H.; Zhang, X.G.; Yu, H.X.; Tu, J.A.; Chen, H.L.; Liu, Y.C.; Su, X.; Wang, R.D.; Zhang, L.; Li, D.C. A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci. Adv. 2021, 7, eabd0199. [Google Scholar] [CrossRef]
- Catarinucci, L.; de Donno, D.; Mainetti, L.; Palano, L.; Patrono, L.; Stefanizzi, M.L.; Tarricone, L. An IoT-Aware Architecture for Smart Healthcare Systems. Ieee Internet Things J. 2015, 2, 515–526. [Google Scholar] [CrossRef]
- Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D.H. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials. Adv. Mater. 2016, 28, 4203–4218. [Google Scholar] [CrossRef]
- Hu, Y.Z.; Niu, T.T.; Liu, Y.H.; Zhou, Y.P.; Xia, Y.D.; Ran, C.X.; Wu, Z.B.; Song, L.; Muller-Buschbaum, P.; Chen, Y.H.; et al. Flexible Perovskite Solar Cells with High Power-Per-Weight: Progress, Application, and Perspectives. Acs Energy Lett. 2021, 6, 2917–2943. [Google Scholar] [CrossRef]
- Zheng, H.W.; Zi, Y.L.; He, X.; Guo, H.Y.; Lai, Y.C.; Wang, J.; Zhang, S.L.; Wu, C.S.; Cheng, G.; Wang, Z.L. Concurrent Harvesting of Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing. ACS Appl. Mater. Interfaces 2018, 10, 14708–14715. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, D.; Xu, Z.; Zhang, X.; Yang, Y.; Guo, J.; Zhang, B.; Zhao, W. Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord. Chem. Rev. 2021, 427, 213597. [Google Scholar] [CrossRef]
- Lam, J.Y.; Chen, J.Y.; Tsai, P.C.; Hsieh, Y.T.; Chueh, C.C.; Tung, S.H.; Chen, W.C. A stable, efficient textile-based flexible perovskite solar cell with improved washable and deployable capabilities for wearable device applications. Rsc Adv. 2017, 7, 54361–54368. [Google Scholar] [CrossRef] [Green Version]
- Takshi, A.; Aljafari, B.; Kareri, T.; Stefanakos, E. A Critical Review on the Voltage Requirement in Hybrid Cells with Solar Energy Harvesting and Energy Storage Capability. Batter. Supercaps 2021, 4, 252–267. [Google Scholar] [CrossRef]
- Wu, W.; Wang, L.; Li, Y.; Zhang, F.; Lin, L.; Niu, S.; Chenet, D.; Zhang, X.; Hao, Y.; Heinz, T.F.; et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Sivasubramanian, R.; Aravind Vaithilingam, C.; Indira, S.S.; Paiman, S.; Misron, N.; Abubakar, S. A review on photovoltaic and nanogenerator hybrid system. Mater. Today Energy 2021, 20, 100772. [Google Scholar] [CrossRef]
- Balogun, M.S.; Yang, H.; Luo, Y.; Qiu, W.T.; Huang, Y.C.; Liu, Z.Q.; Tong, Y.X. Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes. Energy Environ. Sci. 2018, 11, 1859–1869. [Google Scholar] [CrossRef]
- Shitanda, I.; Tsujimura, S. Toward self-powered real-time health monitoring of body fluid components based on improved enzymatic biofuel cells. J. Phys. Energy 2021, 3, 032002. [Google Scholar] [CrossRef]
- Chen, X.; Yin, L.; Lv, J.; Gross, A.J.; Le, M.; Gutierrez, N.G.; Li, Y.; Jeerapan, I.; Giroud, F.; Berezovska, A.; et al. Stretchable and Flexible Buckypaper-Based Lactate Biofuel Cell for Wearable Electronics. Adv. Funct. Mater. 2019, 29, 1905785. [Google Scholar] [CrossRef]
- Shitanda, I.; Fujimura, Y.; Nohara, S.; Hoshi, Y.; Itagaki, M.; Tsujimura, S. Paper-Based Disk-Type Self-Powered Glucose Biosensor Based on Screen-Printed Biofuel Cell Array. J. Electrochem. Soc. 2019, 166, B1063–B1068. [Google Scholar] [CrossRef]
- Jia, W.; Valdés-Ramírez, G.; Bandodkar, A.J.; Windmiller, J.R.; Wang, J. Epidermal Biofuel Cells: Energy Harvesting from Human Perspiration. Angew. Chem. Int. Ed. 2013, 52, 7233–7236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.G.; Pu, Z.H.; Su, X.; Yu, H.X.; Li, D.C. Communication-An Epidermal Electrochemical Energy Source with a Replaceable Glucose Power Supply Membrane. J. Electrochem. Soc. 2021, 168, 105501. [Google Scholar] [CrossRef]
- Pu, Z.; Tu, J.; Han, R.; Zhang, X.; Wu, J.; Fang, C.; Wu, H.; Zhang, X.; Yu, H.; Li, D. A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3D nanostructure for implantable continuous glucose monitoring. Lab A Chip 2018, 18, 3570–3577. [Google Scholar] [CrossRef]
- Holowatz, L.A.; Thompson, C.S.; Minson, C.T.; Kenney, W.L. Mechanisms of acetylcholine-mediated vasodilatation in young and aged human skin. J. Physiol. 2005, 563, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Milazzo, G.; Blank, M. Bioelectrochemistry I: Biological Redox Reactions; Plenum Press: New York, NY, USA, 1983. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Zhang, X.; Li, C.; Zhu, W.; Li, D.; Pu, Z. Electrically Inspired Flexible Electrochemical Film Power Supply for Long-Term Epidermal Sensors. Micromachines 2023, 14, 650. https://doi.org/10.3390/mi14030650
Zheng H, Zhang X, Li C, Zhu W, Li D, Pu Z. Electrically Inspired Flexible Electrochemical Film Power Supply for Long-Term Epidermal Sensors. Micromachines. 2023; 14(3):650. https://doi.org/10.3390/mi14030650
Chicago/Turabian StyleZheng, Hao, Xingguo Zhang, Chengcheng Li, Wangwang Zhu, Dachao Li, and Zhihua Pu. 2023. "Electrically Inspired Flexible Electrochemical Film Power Supply for Long-Term Epidermal Sensors" Micromachines 14, no. 3: 650. https://doi.org/10.3390/mi14030650