Design and Simulated Electrical Properties of a Proposed Implanted-Epi Silicon 3D-Spherical Electrode Detector
Abstract
:1. Introduction
2. The Concept and Design of Implanted-Epi Silicon 3D-Spherical Electrode Detectors
3. Electrical Characteristic Results
3.1. Electrical Potential Distribution
3.2. Electric Field Distribution
3.3. Electronic Concentration Distribution and Depletion Voltage
3.4. Leakage Current and Capacitance
4. Detector Array of the Implanted-Epi Silicon 3D-Spherical Electrode Detector Cells
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Milbrath, B.D.; Peurrung, A.J.; Bliss, M.; Weber, W.J. Radiation detector materials: An overview. J. Mater. Res. 2008, 23, 2561–2581. [Google Scholar] [CrossRef]
- Betta, G.-F.D.; Povoli, M. Progress in 3D Silicon Radiation Detectors. Front. Phys. 2022, 10. [Google Scholar] [CrossRef]
- Casse, G. New trends in silicon detector technology. J. Instrum. 2020, 15, C05057. [Google Scholar] [CrossRef]
- Lutz, G. Semiconductor Radiation Detectors; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Casse, G. Overview of the recent activities of the RD50 collaboration on radiation hardening of semiconductor detectors for the sLHC. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 598, 54–60. [Google Scholar] [CrossRef]
- Pourmorteza, A.; Symons, R.; Sandfort, V.; Mallek, M.; Fuld, M.K.; Henderson, G.; Jones, E.C.; Malayeri, A.A.; Folio, L.R.; Bluemke, D.A. Abdominal imaging with contrast-enhanced photon-counting CT: First human experience. Radiology 2016, 279, 239. [Google Scholar] [CrossRef]
- Lutz, G. Novel semiconductor detectors for X-ray astronomy and spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 501, 288–297. [Google Scholar] [CrossRef]
- Lindström, G.; Moll, M.; Fretwurst, E. Radiation hardness of silicon detectors–a challenge from high-energy physics. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1999, 426, 1–15. [Google Scholar] [CrossRef]
- Virdee, T.S. Detectors at LHC. Phys. Rep. 2004, 403–404, 401–434. [Google Scholar] [CrossRef]
- Moser, H.-G. Silicon detector systems in high energy physics. Prog. Part. Nucl. Phys. 2009, 63, 186–237. [Google Scholar] [CrossRef]
- Parker, S.I.; Kenney, C.J.; Segal, J. 3D—A proposed new architecture for solid-state radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1997, 395, 328–343. [Google Scholar] [CrossRef]
- Kalliopuska, J.; Eränen, S.; Orava, R. 3D simulations of 3D silicon radiation detector structures. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. 2006, 568, 27–33. [Google Scholar] [CrossRef]
- Grönlund, T.; Li, Z.; Carini, G.; Li, M. Full 3D simulations of BNL one-sided silicon 3D detectors and comparisons with other types of 3D detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2008, 586, 180–189. [Google Scholar] [CrossRef]
- Kenney, C.; Parker, S.; Segal, J.; Storment, C. Silicon detectors with 3-D electrode arrays: Fabrication and initial test results. IEEE Trans. Nucl. Sci. 1999, 46, 1224–1236. [Google Scholar] [CrossRef]
- Kenney, C.J.; Parker, S.; Walckiers, E. Results from 3-D silicon sensors with wall electrodes: Near-cell-edge sensitivity measurements as a preview of active-edge sensors. IEEE Trans. Nucl. Sci. 2001, 48, 2405–2410. [Google Scholar] [CrossRef]
- Piemonte, C.; Boscardin, M.; Betta, G.-F.D.; Ronchin, S.; Zorzi, N. Development of 3D detectors featuring columnar electrodes of the same doping type. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 541, 441–448. [Google Scholar] [CrossRef]
- DaVia, C.; Hasi, J.; Kenney, C.; Kok, A.; Parker, S. 3D silicon detectors—Status and applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 549, 122–125. [Google Scholar] [CrossRef]
- Ronchin, S.; Boscardin, M.; Piemonte, C.; Pozza, A.; Zorzi, N.; Betta, G.-F.D.; Bosisio, L.; Pellegrini, G. Fabrication of 3D detectors with columnar electrodes of the same doping type. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 573, 224–227. [Google Scholar] [CrossRef]
- Pellegrini, G.; Lozano, M.; Ullán, M.; Bates, R.; Fleta, C.; Pennicard, D. First double-sided 3-D detectors fabricated at CNM-IMB. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2008, 592, 38–43. [Google Scholar] [CrossRef]
- Li, Z. New detectors with novel electrode configurations for applications in sLHC and photon sciences. In Proceedings of the Fifteenth Workshop of CERN RD50, CERN, Geneva, Switzerland, 17–19 November 2009; pp. 16–18. [Google Scholar]
- Li, Z. New BNL 3D-Trench electrode Si detectors for radiation hard detectors for sLHC and for X-ray applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 658, 90–97. [Google Scholar] [CrossRef]
- Forcolin, G.T.; Mendicino, R.; Boscardin, M.; Lai, A.; Loi, A.; Ronchin, S.; Vecchi, S.; Betta, G.F.D. Development of 3D trenched-electrode pixel sensors with improved timing performance. J. Instrum. 2019, 14, C07011. [Google Scholar] [CrossRef]
- Lai, A.; Anderlini, L.; Aresti, M.; Bizzeti, A.; Cardini, A.; Betta, G.F.D.; Forcolin, G.T.; Garau, M.; Lampis, A.; Loi, A.; et al. First results of the TIMESPOT project on developments on fast sensors for future vertex detectors. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. 2020, 981, 164491. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Long, J.; Shi, D.; Chen, X.; Hou, M.; Gao, J.; Liu, H.; He, Y.; Fan, B.; et al. Achieving a sub-10 nm nanopore array in silicon by metal-assisted chemical etching and machine learning. Int. J. Extrem. Manuf. 2021, 3, 035104. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Zhang, C.; Tuan, C.C.; Chen, X.; Gao, J.; Wong, C.P. Controlling Kink Geometry in Nanowires Fabricated by Alternating Metal-Assisted Chemical Etching. Nano Lett. 2017, 17, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Chen, Y.; Li, Z.; Dong, S.; Li, L.; Hou, M.; Liu, H.; Zhao, S.; Chen, X.; Wong, C.P.; et al. Anisotropic Charge Transport Enabling High-Throughput and High-Aspect-Ratio Wet Etching of Silicon Carbide. Small Methods 2022, 6, e2200329. [Google Scholar] [CrossRef] [PubMed]
- Roxhed, N.; Griss, P.; Stemme, G. A method for tapered deep reactive ion etching using a modified Bosch process. J. Micromechanics Microengineering 2007, 17, 1087–1092. [Google Scholar] [CrossRef]
- Chen, J.; Ding, H.; Li, Z.; Yan, S. 3D simulations of device performance for 3D-Trench electrode detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 796, 34–37. [Google Scholar] [CrossRef]
- Montalbano, A.; Bassignana, D.; Li, Z.; Liu, S.; Lynn, D.; Pellegrini, G.; Tsybychev, D. A systematic study of BNL’s 3D-Trench Electrode detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 765, 23–28. [Google Scholar] [CrossRef]
- Lai, A. Timing characterisation of 3D-trench silicon sensors. J. Instrum. 2020, 15, C09054. [Google Scholar] [CrossRef]
- Liu, M.; Lu, S.; Li, Z. Theoretical bases of hypothetical sphere-electrode detectors and practical near-sphere-electrode (semisphere-electrode and near-semisphere-electrode) detectors. J. Phys. D Appl. Phys. 2020, 54, 045101. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, W.; Li, Z.; Zhao, Z.; Li, Z. 3D Simulation, Electrical Characteristics and Customized Manufacturing Method for a Hemispherical Electrode Detector. Sensors 2022, 22, 6835. [Google Scholar] [CrossRef]
- Wei, H.; Fang, Y.; Mulligan, P.; Chuirazzi, W.; Fang, H.-H.; Wang, C.; Ecker, B.R.; Gao, Y.; Loi, M.A.; Cao, L.; et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 2016, 10, 333–339. [Google Scholar] [CrossRef]
- Wei, H.; Fang, Y.; Yuan, Y.; Shen, L.; Huang, J. Trap Engineering of CdTe Nanoparticle for High Gain, Fast Response, and Low Noise P3HT:CdTe Nanocomposite Photodetectors. Adv. Mater. 2015, 27, 4975–4981. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Huang, J. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 2019, 10, 1066. [Google Scholar] [CrossRef] [PubMed]
- Eaglesham, D.J.; Gossmann, H.; Cerullo, M. Limiting thickness hepi for epitaxial growth and room-temperature Si growth on Si(100). Phys. Rev. Lett. 1990, 65, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Posselt, M.; Schmidt, B.; Feudel, T.; Strecker, N. Atomistic simulation of ion implantation and its application in Si technology. Mater. Sci. Eng. B 2000, 71, 128–136. [Google Scholar] [CrossRef]
- Dort, M.J.V.; Woerlee, P.H.; Walker, A.J. A simple model for quantisation effects in heavily-doped silicon MOSFETs at inversion conditions. Solid-State Electron. 1994, 37, 411–414. [Google Scholar] [CrossRef]
- Li, X.; Liu, M.; Li, Z. Design and simulation of silicon detector cells with spiral ring electrode structures. AIP Adv. 2021, 11, 045127. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Cheng, W.; Li, Z.; Li, Z. Radiation Hardness Property of Ultra-Fast 3D-Trench Electrode Silicon Detector on N-Type Substrate. Micromachines 2021, 12, 1400. [Google Scholar] [CrossRef]
- Feng, M.; Li, Z.; Liu, M.; Tang, L. Full 3D Simulation of the New Closed Shell-Electrode Detector. MATEC Web Conf. 2017, 108. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, C.; Liu, M.; Lu, S.; Li, Z. Optimization of 3D shell electrode detectors—A type of honeycomb shell electrode detector. AIP Adv. 2018, 8, 125309. [Google Scholar] [CrossRef]
Doping Method | Central Electrode | Silicon Bulk | Outer Electrode |
---|---|---|---|
p+/p/n+ | p+ | p | n+ |
p+/n/n+ | p+ | n | n+ |
n+/n/p+ | n+ | n | p+ |
n+/p/p+ | n+ | p | p+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Li, Z.; Li, X.; Tan, Z.; Liu, M.; Wang, H. Design and Simulated Electrical Properties of a Proposed Implanted-Epi Silicon 3D-Spherical Electrode Detector. Micromachines 2023, 14, 551. https://doi.org/10.3390/mi14030551
Cai X, Li Z, Li X, Tan Z, Liu M, Wang H. Design and Simulated Electrical Properties of a Proposed Implanted-Epi Silicon 3D-Spherical Electrode Detector. Micromachines. 2023; 14(3):551. https://doi.org/10.3390/mi14030551
Chicago/Turabian StyleCai, Xinyi, Zheng Li, Xinqing Li, Zewen Tan, Manwen Liu, and Hongfei Wang. 2023. "Design and Simulated Electrical Properties of a Proposed Implanted-Epi Silicon 3D-Spherical Electrode Detector" Micromachines 14, no. 3: 551. https://doi.org/10.3390/mi14030551