Implementation of a Wideband Microwave Filter Design with Dual Electromagnetic Interference (EMI) Mitigation for Modern Wireless Communication Systems with Low Insertion Loss and High Selectivity
Abstract
:1. Introduction
2. Methodology of the Proposed SWB-BPF
3. Mathematical Modelling of the Dual-Notch Filter
4. Proposed Filter Architecture
5. Hardware and Software Simulation Implementation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bandyopadhyay, A.; Pankaj, S.; Rowdra, G. A Bandwidth Reconfigurable Bandpass Filter for Ultra-Wideband and Wideband Applications. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2747–2751. [Google Scholar]
- Ramkumar, S.; Boopathi, R.R. Compact reconfigurable bandpass filter using quarter wavelength stubs for ultra-wideband applications. AEU-Int. J. Electron. Commun. 2022, 151, 154219. [Google Scholar] [CrossRef]
- Basit, A.; Khattak, M.I.; Nebhen, J.; Jan, A.; Ahmad, G. Investigation of external quality factor and coupling coefficient for a novel SIR-based microstrip tri-band bandpass filter. PLoS ONE 2021, 16, e0258386. [Google Scholar] [CrossRef]
- Zhou, C.-X.; Guo, P.-P.; Zhou, K.; Wu, W. Design of a compact UWB filter with high selectivity and super wide stopband. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 636–638. [Google Scholar] [CrossRef]
- Zhou, J.; Rao, Y.; Yang, D.; Qian, H.J.; Luo, X. Compact Wideband BPF with Wide Stopband Using Substrate Integrated Defected Ground Structure. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 353–356. [Google Scholar] [CrossRef]
- Xu, J. Compact Quasi-Elliptic Response Wideband Bandpass Filter with Four Transmission Zeros. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 169–171. [Google Scholar] [CrossRef]
- Iquball, A.; Abdulla, P. Bandpass filter based on asymmetric funnel shaped resonators with ultrawide upper stopband characteristics. AEU Int. J. Electron. Commun. 2020, 116, 153062. [Google Scholar] [CrossRef]
- Ali Kursad, G.; Dogan, E.; Gorur, A. Quintuple-mode wideband bandpass filter based on stub-loaded circular resonator. Int. J. RF Microw. Comput.-Aided Eng. 2022, 32, e22927. [Google Scholar]
- Zhang, X.; Liu, S.; Wang, L.; Yu, Q.; Lou, J. Design and Analysis of Ultra-wideband and Miniaturized Bandpass Filter Based on Spoof Surface Plasmon Polaritons. Plasmonics 2022, 17, 789–797. [Google Scholar] [CrossRef]
- Wang, C.-H.; Shi, X.-M. Miniaturized tri-notched wideband bandpass filter with ultrawide upper stopband suppression. Sci. Rep. 2021, 11, 13004. [Google Scholar] [CrossRef]
- Widaa, A.; You, C.J.; Awad, M.; Cai, J. Compact Wideband Bandpass Filter Using Miniaturized Staircase Interdigital Resonators. In Proceedings of the 2020 50th European Microwave Conference (EuMC), Utrecht, The Netherlands, 12–14 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 97–99. [Google Scholar]
- Sun, J.; Li, G.R. A balanced ultra-wideband bandpass filter based on H-type sandwich slotline. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22611. [Google Scholar] [CrossRef]
- Razzaz, F.; Saeed, S.M.; Alkanhal, M.A.S. Ultra-Wideband Bandpass Filters Using Tapered Resonators. Appl. Sci. 2022, 12, 3699. [Google Scholar] [CrossRef]
- Jamsai, M.; Angkawisittpan, N.; Nuan-On, A. Design of a compact ultra-wideband bandpass filter using inductively compensated parallel-coupled lines. Electronics 2021, 10, 2575. [Google Scholar] [CrossRef]
- Hung, C.Y.; Weng, M.H.; Su, Y.K. Design of compact and sharp rejection UWB BPFs using interdigital stepped-impedance resonators. IEICE Electron. Lett. 2007, 90, 1652–1654. [Google Scholar] [CrossRef]
- Chang, Y.C.; Kao, C.H.; Weng, M.H.; Yang, R.Y. Design of the compact wideband bandpass filter with low loss, high selectivity and wide stopband. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 187–189. [Google Scholar] [CrossRef]
- Wong, S.W.; Zhu, L. Implementation of compact UWB bandpass filter with a notch-band. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 10–12. [Google Scholar] [CrossRef]
- Song, Y.; Yang, G.M.; Geyi, W. Compact UWB bandpass filter with dual notched bands using defected ground structures. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 230–232. [Google Scholar] [CrossRef]
- Liu, J.B.; Ding, W.H.; Chen, J.H.; Zhang, A. New ultra-wideband filter with sharp notched band using defected ground structure. Prog. Electromagn. Res. Lett. 2019, 83, 99–105. [Google Scholar] [CrossRef]
- Choudhary, D.K.; Chaudhary, R.K. A compact via-less metamaterial wideband bandpass filter using split circular rings and rectangular stub. Prog. Electromagn. Res. Lett. 2018, 72, 99–106. [Google Scholar] [CrossRef]
- Ji, X.C.; Ji, W.S.; Feng, L.Y.; Tong, Y.Y.; Zhang, Z.Y. Design of a novel multi-layer wideband bandpass filter with a notched band. Prog. Electromagn. Res. Lett. 2019, 82, 9–16. [Google Scholar] [CrossRef]
- Hsu, C.L.; Hsu, F.C.; Kuo, J.K. Microstrip bandpass filters for ultra-wideband (UWB) wireless communications. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, USA, 12–17 June 2005; IEEE: Piscataway, NJ, USA, 2005. [Google Scholar]
- Yang, G.M.; Xiao, G.; Jin, R.; Geng, J.; He, W.; Ding, M. Design of ultra-wide band (UWB) bandpass filter based on defected ground structure. Microw. Opt. Technol. Lett. 2010, 49, 1374–1377. [Google Scholar] [CrossRef]
- Wu, C.H.; Lin, Y.S.; Wang, C.H.; Chen, C.H. A compact LTCC ultra-wideband bandpass filter using semi-lumped parallel-resonance circuits for spurious suppression. In Proceedings of the Microwave Conference, Munich, Germany, 9–12 October 2007; European IEEE: Vienna, Austria, 2007. [Google Scholar]
- Hong, J.-S.; Shaman, H. An optimum ultra-wideband microstrip filter. Microw. Opt. Technol. Lett. 2010, 47, 230–233. [Google Scholar] [CrossRef]
- Wong, W.T.; Lin, Y.-S.; Wang, C.-H.; Chen, C.H. Highly selective microstrip bandpass filters for ultra-wideband (UWB) applications. In Proceedings of the Asia-Pacific Microwave Conference, Suzhou, China, 4–7 December 2005; IEEE: Piscataway, NJ, USA, 2006. [Google Scholar]
- Shaman, H.; Hong, J.S. A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 121–123. [Google Scholar] [CrossRef]
- Shaman, H.; Hong, J.S. An optimum ultra-wideband (UWB) bandpass filter with spurious response suppression. In Proceedings of the IEEE Wireless & Microwave Technology Conference, Long Beach, CA, USA, 16–17 August 2007. [Google Scholar]
- Deng, H.W.; Zhao, Y.; Zhang, L.; Zhang, X.; Gao, S. Compact quintuple-mode stub-loaded resonator and UWB filter. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 438–440. [Google Scholar] [CrossRef]
- Zhu, H.; Chu, Q.X. Compact ultra-wideband (UWB) bandpass filter using dual-stub-loaded resonator (DSLR). IEEE Microw. Wirel. Compon. Lett. 2013, 23, 527–529. [Google Scholar] [CrossRef]
- Chu, Q.X.; Wu, X.H.; Tian, X.K. Novel UWB bandpass filter using stub-loaded multiple-mode resonator. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 403–405. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, S.; Menzel, W. Ultra-wideband (UWB) bandpass filters using multiple-mode resonator. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 796–798. [Google Scholar]
- Wei, F.; Li, W.T.; Shi, X.W.; Huang, Q.L. Compact UWB bandpass filter with triple-notched bands using triple-mode stepped impedance resonator. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 512–514. [Google Scholar] [CrossRef]
- Wei, F.; Qin, P.-Y.; Guo, Y.J.; Shi, X.-W. Design of multi-band bandpass filters based on stub loaded stepped-impedance resonator with defected microstrip structure. IET Microw. Antennas Propag. 2016, 10, 230–236. [Google Scholar] [CrossRef]
- Lu, X.; Wei, B.; Xu, Z.; Cao, B.; Zhang, X.; Wang, R.; Song, F. Superconducting ultra-wideband (UWB) bandpass filter design based on quintuple/quadruple/triple-mode resonator. IEEE Trans. Microw. Theory Tech. 2015, 63, 1281–1293. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Li, L. Triple band-notched UWB antenna based on SIR-DGS and fork-shaped stubs. Electron. Lett. 2014, 50, 67–69. [Google Scholar] [CrossRef]
- Zhou, L.-H.; Ma, Y.; Shi, J.; Chen, J.; Che, W. Differential dual-band bandpass filter with tunable lower band using embedded DGS unit for common-mode suppression. IEEE Trans. Microw. Theory Tech. 2016, 64, 4183–4191. [Google Scholar] [CrossRef]
- Zakaria, Z.; Mutalib, M.A.; Ismail, A.; Isa, M.S.M.; Ismail, M.M.; Latiff, A.A.; Zainuddin, N.A.; Sam, W.Y. Compact structure of band-pass filter integrated with Defected Microstrip Structure (DMS) for wideband applications. In Proceedings of the European Conference on Antennas and Propagation, The Hague, The Netherlands, 6–11 April 2014; Volume 21, pp. 2158–2162. [Google Scholar]
- Wang, J.; Zhao, J.; Li, J.L. Compact UWB bandpass filter with triple notched bands using parallel U-shaped defected microstrip structure. Electron. Lett. 2014, 50, 89–91. [Google Scholar] [CrossRef]
- Ansoft Corporation. Ansoft HFSS; Version 15; Ansoft Corporation: Pittsburgh, PA, USA, 2016. [Google Scholar]
- Wang, C.-H.; Lin, Y.-S.; Chen, C.H. Novel inductance-incorporated microstrip coupled-line bandpass filters with two attenuation poles. In Proceedings of the 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), Fort Worth, TX, USA, 6–11 June 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 1979–1982. [Google Scholar] [CrossRef]
- Hong, J.-S.; Shaman, H.; Chun, Y.-H. Dual-mode microstrip open-loop resonators and filters. IEEE Trans. Microw. Theory Tech. 2007, 55, 1764. [Google Scholar] [CrossRef]
- Guillemin, E.A. Synthesis of Passive Networks: Theory and Methods Appropriate to the Realization and Approximation Problems; Wiley: New York, NY, USA, 1959. [Google Scholar]
- Matthaei, G.L.; Young, L.; Jones, E.M.T. Microwave Filters, Impedance-Matching Networks, and Coupling Structures; Artech House Books: New York, NY, USA, 1980. [Google Scholar]
- Litvintsev Sergii, N.; Zakharov, A.V. Analysis of Dual-mode Resonators from Transmission Line Segments. Radioelectron. Commun. Syst. 2022, 65, 186–199. [Google Scholar] [CrossRef]
- Karpuz, C.; Ozdemir, P.O.; Balik, H.H.; Gorur, A. An Alternative Coupling Matrix Arrangement for Capacitively Loaded Multi-Mode Microstrip Diplexers Having Close Channel Bands. AEU-Int. J. Electron. Commun. 2023, 161, 154540. [Google Scholar] [CrossRef]
- Zhuang, C.Y.; Lin, D.B. Design Compact Absorptive Common-Mode Noise Suppression Filter with Series Unified Circuit. Sensors 2023, 23, 957. [Google Scholar] [CrossRef]
- Zhang, G.; Basit, A.; Khan, M.I.; Daraz, A.; Saqib, N.; Zubir, F. Multi Frequency Controllable In-Band Suppressions in a Broad Bandwidth Microstrip Filter Design for 5G Wi-Fi and Satellite Communication Systems Utilizing a Quad-Mode Stub-Loaded Resonator. Micromachines 2023, 14, 866. [Google Scholar] [CrossRef]
- Partha Pratim, S.; Khan, T. A quintuple mode resonator based bandpass filter for ultra-wideband applications. Microsyst. Technol. 2020, 26, 2295–2304. [Google Scholar]
- Xu, K.-D.; Li, D.; Liu, Y. High-selectivity wideband bandpass filter using simple coupled lines with multiple transmission poles and zeros. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 107–109. [Google Scholar] [CrossRef]
- Xu, K.-D.; Lu, S.; Ren, Y.; Zhang, A.; Chen, Q. Coupled-line band-pass filter with T-shaped structure for high frequency selectivity and stopband rejection. Int. J. RF Microw. Comput.-Aided Eng. 2020, 30, e22259. [Google Scholar] [CrossRef]
- Yu, H.; Wu, Y.; Wang, W. A high-selectivity wideband bandpass filter with multiple transmission poles and zeros. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22574. [Google Scholar] [CrossRef]
- Yang, Q.; Li, H.; Li, J.; Guo, C.; Zhang, A. Design of wideband bandpass filter using short-circuited circular patch resonator loaded with slots. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22473. [Google Scholar] [CrossRef]
- Chakraborty, P.; Shome, P.P.; Deb, A.; Neogi, A.; Panda, J.R. Compact Configuration of Open-ended Stub Loaded Multimode Resonator Based UWB Bandpass Filter with High Selectivity. In Proceedings of the IEEE 8th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 26–27 August 2021; pp. 59–63. [Google Scholar]
- Saxena, G.; Jain, P.; Awasthi, Y.K. Design and analysis of a planar UWB bandpass filter with stopband characteristics using MMR technique. Int. J. Microw. Wirel. Technol. 2021, 13, 999–1006. [Google Scholar] [CrossRef]
- Ramanujam, P.; Arumugam, C.; RVenkatesan, P.G.; Ponnusamy, M. Design of Compact UWB Filter Using Parallel-coupled Line and Circular Open-circuited Stubs. IETE J. Res. 2020, 68, 4665–4672. [Google Scholar] [CrossRef]
- Kumari, P.; Sarkar, P.; Ghatak, R. Design of a compact UWB BPF with a Fractal Tree Stub Loaded Multimode Resonator. IET Microw. Antennas Propag. 2020, 15, 55–61. [Google Scholar] [CrossRef]
- Kumari, P.; Sarkar, P.; Ghatak, R. A Pythagorean tree fractal shape stub-loaded resonator as a UWB bandpass filter with wide stopband. Int. J. Microw. Wirel. Technol. 2021, 13, 442–446. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, T.; Liu, F.; Xu, T. High selectivity and CM suppression frequency-dependent coupling balanced BPF. IEEE Microw Wirel. Com-Pon Lett. 2018, 28, 413–415. [Google Scholar] [CrossRef]
- Shi, J.; Lu, J.; Xu, K.; Chen, J.X. A coupled-line balanced-to-single-ended out-of-phase power divider with enhanced bandwidth. IEEE Trans Microw Theory Tech. 2017, 65, 459–466. [Google Scholar] [CrossRef]
- Xie, J.; Tang, D.; Shu, Y.; Luo, X. Compact UWB BPF with Broad Stopband Based on Loaded-Stub and C-Shape SIDGS Resonators. IEEE Microw. Wirel. Compon. Lett. 2021, 32, 383–386. [Google Scholar] [CrossRef]
- Shome, P.P.; Khan, T. A compact design of circular ring-shaped MMR based bandpass filter for UWB applications. In Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019; pp. 962–964. [Google Scholar]
- Feng, Y.; Fang, S.; Jia, S.; Xu, Z. Tri-layered stacked substrate integrated waveguide bandpass filter using non-resonant nodes excitation. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 1004–1008. [Google Scholar] [CrossRef]
Ref. No. | Passband (GHz) | FBW (%) | IL/RL (dB) | C.F/BW (GHz) |
---|---|---|---|---|
[11] | 1.8–3.1 | 62.5 | 0.5/20 | 2.45/1.3 |
[12] | 2.7–8.23 | 132% | 2.5/10 | 5.46/5.53 |
[14] | 2.92–10.95 | 107 | 0.49/>12 | 6.93/8.03 |
[49] | 3.21–10.77 | 109.4 | 0.8/15 | 8.6/7 |
[50] | 1.44–2.66 | 60 | 0.6/20 | 2.05/1.22 |
[51] | 1.64–2.47 | 40 | 0.8/20 | 2.05/0.83 |
[52] | 2.3–4.08 | 50.3 | 1.2/12 | 6.38/1.78 |
[53] | 2.4–7.2 | 83 | 0.5/14 | 6/4.8 |
[54] | 2.94–10.39 | 111.6 | 0.5 | 6.66/7.45 |
[55] | 3.1–10.6 | 109 | <0.5 | 6.85/7.5 |
[56] | 3.1–10.6 | 119 | 0.35 | 6.85/7.5 |
[57] | 3.7–9.6 | 106.2 | <1 | 6.65/3.2 |
[58] | 3.6–10.4 | 103.9 | >0.5 | 7/6.8 |
[59] | 2.2–2.53 | 4 | 2.5/>20 | 2.3/0.33 |
[60] | 1–3 | 135 | 0.1/>20 | 2/2 |
[61] | 2.95–10.75 | 113.9 | 0.6/14 | 6.85/7.8 |
[62] | 3.05–10.62 | 100.9 | 1.5/13 | 6.83/7.57 |
[63] | 9.5–10.5 | 8.5 | 1.8/>10 | 10/1 |
This work | 2.5–16.8 | 148.18 | >0.4/>10 | 9.65/13.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basit, A.; Daraz, A.; Zhang, G. Implementation of a Wideband Microwave Filter Design with Dual Electromagnetic Interference (EMI) Mitigation for Modern Wireless Communication Systems with Low Insertion Loss and High Selectivity. Micromachines 2023, 14, 1986. https://doi.org/10.3390/mi14111986
Basit A, Daraz A, Zhang G. Implementation of a Wideband Microwave Filter Design with Dual Electromagnetic Interference (EMI) Mitigation for Modern Wireless Communication Systems with Low Insertion Loss and High Selectivity. Micromachines. 2023; 14(11):1986. https://doi.org/10.3390/mi14111986
Chicago/Turabian StyleBasit, Abdul, Amil Daraz, and Guoqiang Zhang. 2023. "Implementation of a Wideband Microwave Filter Design with Dual Electromagnetic Interference (EMI) Mitigation for Modern Wireless Communication Systems with Low Insertion Loss and High Selectivity" Micromachines 14, no. 11: 1986. https://doi.org/10.3390/mi14111986
APA StyleBasit, A., Daraz, A., & Zhang, G. (2023). Implementation of a Wideband Microwave Filter Design with Dual Electromagnetic Interference (EMI) Mitigation for Modern Wireless Communication Systems with Low Insertion Loss and High Selectivity. Micromachines, 14(11), 1986. https://doi.org/10.3390/mi14111986