Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Setup
2.2. Data-Driven System Identification
2.2.1. Duffing Oscillator Operation
2.2.2. Simulated Annealing Algorithm
Algorithm 1. Adapted SA method for data-driven system identification application |
1 Initialize the algorithm parameters: Cooling rate alfa, Temp. , Boltzmann’s constant k 2 Initialize the input parameters ranges: Duffing coefficients’ variational range (m, alpha, delta, beta, gamma, omega) 3 while termination criterion is not satisfied do (reach final iterations = 300) 4 for i:M iteration without temperature change (M = 30) 5 Active Random mechanism to select the set of corresponding Duffing coefficient. 6 Make a new solution e.g., for only two parameters: & 7 if f(, ) > f(, ) then 8 fbest = f( & ); 9 & 10 else 11 random r(0, 1) (select random number) 12 if r > exp(−f/kT) then (check the Boltzmann’s probability) 13 fbest = f( & ); 14 & 15 else 16 fbest = f( & ), 17 End if 18 End if 19 if abs((f (i −)) >= (abs(f (i −2))) && i > 5 20 sgn= −1*sgn; (change the movement direction) 21 End if 22 End for 23 T = alfa (applying a cooling procedure) 24 f = fbest 25 End while |
2.3. Numerical Simulation
2.3.1. Governing Equation
2.3.2. Modeling Procedure
2.4. Measurement Scheme
3. Results and Discussion
3.1. Numerical Model
3.2. Data-Driven Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MEMS | Micro-electromechanical systems |
ME | Magnetoelectric |
SA | Simulated Annealing |
LDV | Laser Doppler Vibrometer |
THD | Total Harmonic Distortion |
STFT | Short-time Fourier Transform |
FE | Finite Element |
SINDy | Sparse Identification of Nonlinear Dynamical Systems |
ANN | Artificial Neural Network |
DOF | Degree-of-Freedom |
VSM | Vibrating-Sample Magnetometer |
LHS | Latin hypercube sampling |
FDM | finite differences method |
RMS | Root mean square |
PIM | Peak Index Matching |
CC | Correlation Coefficient |
z | Out-of-plane displacement |
ζ | Damping ratio |
α | Linear stiffness |
γ | Non-linear stiffness |
μ | Non-linear damping |
Amplitude of the desired stimulation force | |
Angular frequency of the desired stimulation force | |
f(x) | Objective function |
T | Temperature |
k | Boltzmann’s constant |
f | Difference between objective function for every iteration |
U | Electric potential |
I | Current |
L | Surface current density |
Total magnetic energy | |
Dipole moment | |
Saturation magnetization | |
Magnetostriction coefficient | |
Saturation magnetostriction | |
L | Langevin function |
mass magnetic susceptibility | |
Deviatoric elastic tensor | |
Elastic modulus tensor | |
Elastic strain |
Appendix A
Appendix B
Parameter | Delta | Alpha | Omega | Gamma | Mass | |
---|---|---|---|---|---|---|
Points Number | ||||||
1 | 0.361671999593 | 0.278040544940 | 4.66328953897 × 104 | 0.339451442238 | 0.065870878718 | |
2 | 0.363013075806 | 0.309101936376 | 4.66334492152 × 104 | 0.337459733144 | 0.064703821094 | |
3 | 0.362175254191 | 0.302470915090 | 4.66330440760 × 104 | 0.337614422055 | 0.065506621181 | |
4 | 0.362394000000 | 0.303695603594 | 4.66330521002 × 104 | 0.34024500000 | 0.06593900000 | |
5 | 0.363506320901 | 0.283383704287 | 4.66333831975 × 104 | 0.332648966731 | 0.064578975393 | |
6 | 0.362433330694 | 0.299659422394 | 4.66330872224 × 104 | 0.340984715495 | 0.06593900000 | |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |
52 | 0.361974686843 | 0.330977245251 | 4.66330944730 × 104 | 0.336451973259 | 0.066092226877 | |
53 | 0.362475601632 | 0.296297000000 | 4.6633521067 × 104 | 0.3402450000 | 0.0661028238 | |
54 | 0.3621115925123 | 0.299697723699 | 4.66331662856 × 104 | 0.3387779527 | 0.0647517934 | |
55 | 0.362820938412 | 0.360317841738 | 4.6633158936 × 104 | 0.3553373737 | 0.0683564117 |
References
- Fujii, S.; Wada, K.; Sugano, R.; Kumazaki, H.; Kogure, S.; Kato, Y.K.; Tanabe, T. Versatile tuning of Kerr soliton microcombs in crystalline microresonators. Commun. Phys. 2023, 6, 1. [Google Scholar] [CrossRef]
- Ren, L.; Yuan, S.; Zhu, S.; Shi, L.; Zhang, X. Tunable kilohertz microwave photonic bandpass filter based on backscattering in a microresonator. Opt. Lett. 2022, 47, 4572–4575. [Google Scholar] [CrossRef]
- Ruppert, M.G.; Fleming, A.J.; Yong, Y.K. Active atomic force microscope cantilevers with integrated device layer piezoresistive sensors. Sens. Actuators A Phys. 2021, 319, 112519. [Google Scholar] [CrossRef]
- Morelle, C.; Théron, D.; Roch-Jeune, I.; Tilmant, P.; Okada, E.; Vaurette, F.; Grimbert, B.; Derluyn, J.; Degroote, S.; Germain, M.; et al. A micro-electro-mechanical accelerometer based on gallium nitride on silicon. Appl. Phys. Lett. 2023, 122, 033502. [Google Scholar] [CrossRef]
- Gao, X.; Yang, J.; Wu, J.; Xin, X.; Li, Z.; Yuan, X.; Shen, X.; Dong, S. Piezoelectric Actuators and Motors: Materials, Designs, and Applications. Adv. Mater. Technol. 2020, 5, 1900716. [Google Scholar] [CrossRef]
- Lin, J.; Zhao, D.; Lu, M.; Yi, A. Modeling and Analysis of a Novel Decoupled Vibration-Assisted Swing Cutting System for Micro/Nano-Machining Surface. IEEE Access 2018, 6, 70388–70396. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, G.; Cao, S.; Huo, Z.; Han, J.; Ma, S.; Huang, Z. A Review of Advances in Fabrication Methods and Assistive Technologies of Micro-Structured Surfaces. Processes 2023, 11, 1337. [Google Scholar] [CrossRef]
- Zhu, W.-L.; Zhu, Z.; Guo, P.; Ju, B.-F. A novel hybrid actuation mechanism based XY nanopositioning stage with totally decoupled kinematics. Mech. Syst. Signal Process. 2018, 99, 747–759. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Morita, T. Stepping piezoelectric actuators with large working stroke for nano-positioning systems: A review. Sens. Actuators A Phys. 2019, 292, 39–51. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, Z.; Wang, J.; Sun, X.; Hu, W. Numerical Evaluation and Experimental Test on a New Giant Magnetostrictive Transducer with Low Heat Loss Design. Micromachines 2021, 12, 1397. [Google Scholar] [CrossRef]
- He, W. A Shear-Mode Magnetoelectric Heterostructure with Enhanced Magnetoelectric Response for Stray Power-Frequency Magnetic Field Energy Harvesting. Micromachines 2022, 13, 1882. [Google Scholar] [CrossRef]
- Sadeghi, M.; Hojjat, Y.; Khodaei, M. Design, analysis, and optimization of a magnetoelectric actuator using regression modeling, numerical simulation and metaheuristics algorithm. J. Mater. Sci. Mater. Electron. 2019, 30, 16527–16538. [Google Scholar] [CrossRef]
- Sadeghi, M.; Hojjat, Y.; Khodaei, M. Self-sensing feature of the ultrasonic nano-displacement actuator in Metglas/PMN-PT/Metglas magnetoelectric composite. J. Mater. Sci. Mater. Electron. 2020, 31, 740–751. [Google Scholar] [CrossRef]
- He, W.; Yang, A. A Shear-Mode Piezoelectric Heterostructure for Electric Current Sensing in Electric Power Grids. Micromachines 2019, 10, 421. [Google Scholar] [CrossRef]
- Friedrich, R.-M.; Sadeghi, M.; Faupel, F. Numerical and Experimental Study of Colored Magnetic Particle Mapping via Magnetoelectric Sensors. Nanomaterials 2023, 13, 347. [Google Scholar] [CrossRef]
- Elzenheimer, E.; Hayes, P.; Thormählen, L.; Engelhardt, E.; Zaman, A.; Quandt, E.; Frey, N.; Höft, M.; Schmidt, G. Investigation of Converse Magnetoelectric Thin-Film Sensors for Magnetocardiography. IEEE Sens. J. 2023, 23, 5660–5669. [Google Scholar] [CrossRef]
- Hoffmann, J.; Roldan-Vasco, S.; Krüger, K.; Niekiel, F.; Hansen, C.; Maetzler, W.; Orozco-Arroyave, J.R.; Schmidt, G. Pilot Study: Magnetic Motion Analysis for Swallowing Detection Using MEMS Cantilever Actuators. Sensors 2023, 23, 3594. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Y.; Wu, J. Closed-Loop Control and Output Stability Analysis of a Micromechanical Resonant Accelerometer. Micromachines 2022, 13, 1281. [Google Scholar] [CrossRef]
- Zhang, K.; Xie, J.; Hao, S.; Zhang, Q.; Feng, J. Influence of Electrostatic Force Nonlinearity on the Sensitivity Performance of a Tapered Beam Micro-Gyroscope Based on Frequency Modulation. Micromachines 2023, 14, 211. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, A.; Teoh, Y.X.; Ma, W.; Ye, W. Characterization of a Laterally Oscillating Microresonator Operating in the Nonlinear Region. Micromachines 2016, 7, 132. [Google Scholar] [CrossRef] [PubMed]
- Green, P.L.; Worden, K.; Atallah, K.; Sims, N.D. The effect of Duffing-type non-linearities and Coulomb damping on the response of an energy harvester to random excitations. J. Intell. Mater. Syst. Struct. 2012, 23, 2039–2054. [Google Scholar] [CrossRef]
- Yang, X.; Jiao, C.; Yang, J.; Fan, J.; Li, D.; Wang, B. Bandwidth Enhancement for Wireless Power Transfer System Employing Non-Linear Resonator. IEEE Access 2021, 9, 485–496. [Google Scholar] [CrossRef]
- Ibrahim, A.; Jaber, N.; Chandran, A.; Thirupathi, M.; Younis, M. Dynamics of Microbeams under Multi-Frequency Excitations. Micromachines 2017, 8, 32. [Google Scholar] [CrossRef]
- Dong, C.; He, Y.; Li, M.; Tu, C.; Chu, Z.; Liang, X.; Chen, H.; Wei, Y.; Zaeimbashi, M.; Wang, X.; et al. A Portable Very Low Frequency (VLF) Communication System Based on Acoustically Actuated Magnetoelectric Antennas. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 398–402. [Google Scholar] [CrossRef]
- Niu, Y.; Ren, H. A miniaturized low frequency (LF) magnetoelectric receiving antenna with an integrated DC magnetic bias. Appl. Phys. Lett. 2021, 118, 264104. [Google Scholar] [CrossRef]
- Shi, Y.; Li, N.; Wang, Y.; Ye, J. An analytical model for nonlinear magnetoelectric effect in laminated composites. Compos. Struct. 2021, 263, 113652. [Google Scholar] [CrossRef]
- Martos-Repath, I.; Mittal, A.; Zaeimbashi, M.; Das, D.; Sun, N.X.; Shrivastava, A.; Onabajo, M. Modeling of Magnetoelectric Antennas for Circuit Simulations in Magnetic Sensing Applications. In Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 9–12 August 2020; pp. 49–52. [Google Scholar]
- Sindler, Y.; Lineykin, S. Static, Dynamic, and Signal-to-Noise Analysis of a Solid-State Magnetoelectric (Me) Sensor with a Spice-Based Circuit Simulator. Sensors 2022, 22, 5514. [Google Scholar] [CrossRef]
- Ren, W.; Li, J.; Liu, G.; Chen, J.; Chen, S.; Gu, Z.; Li, J.; Li, J.; Gao, Y. Design and Optimization of a BAW Magnetic Sensor Based on Magnetoelectric Coupling. Micromachines 2022, 13, 206. [Google Scholar] [CrossRef]
- Neiss, S.; Goldschmidtboeing, F.; Kroener, M.; Woias, P. Analytical model for nonlinear piezoelectric energy harvesting devices. Smart Mater. Struct. 2014, 23, 105031. [Google Scholar] [CrossRef]
- Shen, L.; Li, M.; Gao, J.; Shen, Y.; Li, J.F.; Viehland, D.; Zhuang, X.; Sing, M.L.C.; Cordier, C.; Saez, S.; et al. Magnetoelectric nonlinearity in magnetoelectric laminate sensors. J. Appl. Phys. 2011, 110, 114510. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lin, Y.-Z. Nonlinear magnetoelectric coupling in magnetostrictive-piezoelectric composites. Compos. Struct. 2021, 276, 114558. [Google Scholar] [CrossRef]
- Chu, Z.; Dong, C.; Tu, C.; He, Y.; Liang, X.; Wang, J.; Wei, Y.; Chen, H.; Gao, X.; Lu, C.; et al. Voltage-Driven Nonlinearity in Magnetoelectric Heterostructures. Phys. Rev. Appl. 2019, 12, 044001. [Google Scholar] [CrossRef]
- Noll, M.-U.; Lentz, L.; von Wagner, U. Comparison of the dynamics of a Duffing equation model and experimental results for a bistable cantilever beam in magnetoelastic energy harvesting. Tech. Mech. Eur. J. Eng. Mech. 2020, 40, 111–119. [Google Scholar]
- Didonna, M.; Stender, M.; Papangelo, A.; Fontanela, F.; Ciavarella, M.; Hoffmann, N. Reconstruction of Governing Equations from Vibration Measurements for Geometrically Nonlinear Systems. Lubricants 2019, 7, 64. [Google Scholar] [CrossRef]
- Ren, Y.; Adams, C.; Melz, T. Uncertainty Analysis and Experimental Validation of Identifying the Governing Equation of an Oscillator Using Sparse Regression. Appl. Sci. 2022, 12, 747. [Google Scholar] [CrossRef]
- Heris, P.K.; Khamesee, M.B. Design and Fabrication of a Magnetic Actuator for Torque and Force Control Estimated by the ANN/SA Algorithm. Micromachines 2022, 13, 327. [Google Scholar] [CrossRef]
- Wang, J.; Xu, B.; Shi, L.; Zhu, L.; Wei, X. Prospects and Challenges of AI and Neural Network Algorithms in MEMS Microcantilever Biosensors. Processes 2022, 10, 1658. [Google Scholar] [CrossRef]
- Spetzler, B.; Bald, C.; Durdaut, P.; Reermann, J.; Kirchhof, C.; Teplyuk, A.; Meyners, D.; Quandt, E.; Höft, M.; Schmidt, G.; et al. Exchange biased delta-E effect enables the detection of low frequency pT magnetic fields with simultaneous localization. Sci. Rep. 2021, 11, 5269. [Google Scholar] [CrossRef]
- Xing, Z.; Zhai, J.; Li, J.; Viehland, D. Investigation of external noise and its rejection in magnetoelectric sensor design. J. Appl. Phys. 2009, 106, 2. [Google Scholar] [CrossRef]
- Vidal, J.V.; Turutin, A.V.; Kubasov, I.V.; Malinkovich, M.D.; Parkhomenko, Y.N.; Kobeleva, S.P.; Kholkin, A.L.; Sobolev, N.A. Equivalent magnetic noise in magnetoelectric laminates comprising bidomain LiNbO3 crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1102–1119. [Google Scholar] [CrossRef]
- Lage, E.; Kirchhof, C.; Hrkac, V.; Kienle, L.; Jahns, R.; Knöchel, R.; Quandt, E.; Meyners, D. Exchange biasing of magnetoelectric composites. Nat. Mater. 2012, 11, 523–529. [Google Scholar] [CrossRef]
- Kovacic, I.; Brennan, M.J. The Duffing Equation: Nonlinear Oscillators and their Behaviour; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Moghaddam, M.A.; Kolahan, F. Optimization of A-TIG Welding Process Using Simulated Annealing Algorithm. J. Adv. Manuf. Syst. 2020, 19, 869–891. [Google Scholar] [CrossRef]
- Sulaiman, S.S.; Jancy, P.L.; Muthiah, A.; Janakiraman, V.; Gnanaraj, S.J.P. An evolutionary optimal green layout design for a production facility by simulated annealing algorithm. Mater. Today Proc. 2021, 47, 4423–4430. [Google Scholar] [CrossRef]
- Chibante, R. Simulated Annealing: Theory with Applications; IntechOpen: London, UK, 2010. [Google Scholar]
- Yang, Y.; Li, F.; Zhang, N.; Huo, A. Research on the Cooperative Detection of Stochastic Resonance and Chaos for Weak SNR Signals in Measurement While Drilling. Sensors 2021, 21, 3011. [Google Scholar] [CrossRef]
- He, F.; Ye, Q. A Bearing Fault Diagnosis Method Based on Wavelet Packet Transform and Convolutional Neural Network Optimized by Simulated Annealing Algorithm. Sensors 2022, 22, 1410. [Google Scholar] [CrossRef]
- Chikazumi, S. Physics of Ferromagnetism; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Ludwig, A.; Quandt, E. Optimization of the /spl Delta/E effect in thin films and multilayers by magnetic field annealing. IEEE Trans. Magn. 2002, 38, 2829–2831. [Google Scholar] [CrossRef]
- Gugat, J.L.; Krantz, M.C.; Gerken, M. Two-Dimensional Versus Three-Dimensional Finite-Element Method Simulations of Cantilever Magnetoelectric Sensors. IEEE Trans. Magn. 2013, 49, 5287–5293. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghi, M.; Bazrafkan, M.M.; Rutner, M.; Faupel, F. Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm. Micromachines 2023, 14, 1878. https://doi.org/10.3390/mi14101878
Sadeghi M, Bazrafkan MM, Rutner M, Faupel F. Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm. Micromachines. 2023; 14(10):1878. https://doi.org/10.3390/mi14101878
Chicago/Turabian StyleSadeghi, Mohammad, Mohammad M. Bazrafkan, Marcus Rutner, and Franz Faupel. 2023. "Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm" Micromachines 14, no. 10: 1878. https://doi.org/10.3390/mi14101878
APA StyleSadeghi, M., Bazrafkan, M. M., Rutner, M., & Faupel, F. (2023). Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm. Micromachines, 14(10), 1878. https://doi.org/10.3390/mi14101878