Simulation-Based Analysis of the Effect of Alpha Irradiation on GaN Particle Detectors
Abstract
1. Introduction
2. Device Fabrication and Model
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, Y.; Shen, Y.; Sun, X.; Shi, Z.; Jiang, K.; Wu, T.; Liang, H.; Cui, X.; Lü, W.; Li, D. Improved performance of SiC radiation detector based on metal-insulator-semiconductor structures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 997, 165166. [Google Scholar] [CrossRef]
- Chaudhuri, S.K.; Karadavut, O.; Kleppinger, J.W.; Mandal, K.C. High-resolution radiation detection using Ni/SiO2/n-4H-SiC vertical metal-oxide-semiconductor capacitor. J. Appl. Phys. 2021, 130, 074501. [Google Scholar] [CrossRef]
- Maity, A.; Grenadier, S.J.; Li, J.; Lin, J.Y.; Jiang, H.X. High sensitivity hexagonal boron nitride lateral neutron detectors. Appl. Phys. Lett. 2019, 114, 222102. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Q.; Guo, L.; Hao, S.; Zhou, D.; Xu, W.; Zhang, B.; Yang, F.; Ren, F.; Chen, D.; et al. High Resolution 4H-SiC p-i-n Radiation Detectors with Low-Voltage Operation. IEEE Electron Device Lett. 2022, 43, 2161–2164. [Google Scholar] [CrossRef]
- Geng, X.; Xia, X.; Cui, X.; Huang, H.; Liang, X.; Yan, D.; Tian, K.; Chen, L.; Yan, X.; Long, Z.; et al. Enhanced Energy Resolution of GaN-on-Sapphire p-i-n Alpha-Particle Detector with Isoelectronic Al-Doped i-GaN Layer. IEEE Trans. Nucl. Sci. 2021, 68, 2301–2308. [Google Scholar] [CrossRef]
- Polyakov, A.Y.; Smirnov, N.B.; Govorkov, A.V.; Markov, A.V.; Kozhukhova, E.A.; Gazizov, I.M.; Kolin, N.G.; Merkurisov, D.I.; Boiko, V.M.; Korulin, A.V.; et al. Alpha particle detection with GaN Schottky diodes. J. Appl. Phys. 2009, 106, 103708. [Google Scholar] [CrossRef]
- Wang, J.; Mulligan, P.; Brillson, L.; Cao, L.R. Review of using gallium nitride for ionizing radiation detection. Appl. Phys. Rev. 2015, 2, 031102. [Google Scholar] [CrossRef]
- Vaitkus, J.; Cunningham, W.; Gaubas, E.; Rahman, M.; Sakai, S.; Smith, K.M.; Wang, T. Semi-insulating GaN and its evaluation for α particle detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 509, 60–64. [Google Scholar] [CrossRef]
- Grant, J.; Bates, R.; Cunningham, W.; Blue, A.; Melone, J.; McEwan, F.; Vaitkus, J.; Gaubas, E.; O’Shea, V. GaN as a radiation hard particle detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 576, 60–65. [Google Scholar] [CrossRef]
- Owens, A.; Barnes, A.; Farley, R.A.; Germain, M.; Sellin, P.J. GaN detector development for particle and X-ray detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2012, 695, 303–305. [Google Scholar] [CrossRef]
- Gao, F.; Chen, N.; Huang, D.; Heller, E.R.; LeVan, P.D. Atomic-level based non-ionizing energy loss: An application to GaAs and GaN semiconductor materials. In Proceedings of the Infrared Sensors, Devices, and Applications VIII, San Diego, CA, USA, 22–23 August 2018. [Google Scholar]
- Velthuis, J.J.; Mathes, M.; Kagan, H.; Cristinziani, M.; Reuen, L.; Smith, S.; Trischuk, W.; Wermes, N. Radiation hard diamond pixel detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2008, 591, 221–223. [Google Scholar] [CrossRef]
- Sandupatla, A.; Arulkumaran, S.; Ranjan, K.; Ng, G.I.; Murmu, P.P.; Kennedy, J.; Nitta, S.; Honda, Y.; Deki, M.; Amano, H. Low Voltage High-Energy α-Particle Detectors by GaN-on-GaN Schottky Diodes with Record-High Charge Collection Efficiency. Sensors 2019, 19, 5107. [Google Scholar] [CrossRef]
- Xu, Q.; Mulligan, P.; Wang, J.; Chuirazzi, W.; Cao, L. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 849, 11–15. [Google Scholar] [CrossRef]
- Lee, I.-H.; Polyakov, A.Y.; Smirnov, N.B.; Govorkov, A.V.; Kozhukhova, E.A.; Zaletin, V.M.; Gazizov, I.M.; Kolin, N.G.; Pearton, S.J. Electrical properties and radiation detector performance of free-standing bulk n-GaN. J. Vac. Sci. Technol. B 2012, 30, 021205. [Google Scholar] [CrossRef]
- Sandupatla, A.; Arulkumaran, S.; Ing, N.G.; Nitta, S.; Kennedy, J.; Amano, H. Vertical GaN-on-GaN Schottky Diodes as α-Particle Radiation Sensors. Micromachines 2020, 11, 519. [Google Scholar] [CrossRef]
- Hernández-Gutiérrez, C.A.; Casallas-Moreno, Y.L.; Cardona, D.; Kudriavtsev, Y.; Santana-Rodríguez, G.; Mendoza-Pérez, R.; Contreras-Puente, G.; Mendez-Garcia, V.H.; Gallardo-Hernández, S.; Quevedo-Lopez, M.A.; et al. Characterization of n-GaN / p-GaAs NP heterojunctions. Superlattices Microstruct. 2019, 136, 106298. [Google Scholar] [CrossRef]
- Sugiura, M.; Kushimoto, M.; Mitsunari, T.; Yamashita, K.; Honda, Y.; Amano, H.; Inoue, Y.; Mimura, H.; Aoki, T.; Nakano, T. Study of radiation detection properties of GaN pn diode. Jpn. J. Appl. Phys. 2016, 55, 05FJ02. [Google Scholar] [CrossRef]
- Wang, J.; Mulligan, P.L.; Cao, L.R. Transient current analysis of a GaN radiation detector by TCAD. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 761, 7–12. [Google Scholar] [CrossRef]
- Karmarkar, A.P.; Bongim, J.; Fleetwood, D.M.; Schrimpf, R.D.; Weller, R.A.; White, B.D.; Brillson, L.J.; Mishra, U.K. Proton irradiation effects on GaN-based high electron-mobility transistors with Si-doped AlxGa1-xN and thick GaN cap Layers. IEEE Trans. Nucl. Sci. 2004, 51, 3801–3806. [Google Scholar] [CrossRef]
- Keum, D.; Cho, G.; Kim, H. Degradation Characteristics of AlGaN/GaN MOS-Heterostructure FETs by Alpha-Particle Irradiation. ECS J. Solid State Sci. Technol. 2017, 6, S3030–S3033. [Google Scholar] [CrossRef]
- Fares, C.; Ren, F.; Pearton, S.J.; Yang, G.; Kim, J.; Lo, C.-F.; Wayne Johnson, J. Effect of alpha-particle irradiation dose on SiNx/AlGaN/GaN metal-insulator semiconductor high electron mobility transistors. J. Vac. Sci. Technol. B 2018, 36, 041203. [Google Scholar] [CrossRef]
- Vitusevich, S.A.; Kurakin, A.M.; Konakova, R.V.; Belyaev, A.E.; Klein, N. Improvement of interface properties of AlGaN/GaN heterostructures under gamma-radiation. Appl. Surf. Sci. 2008, 255, 784–786. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM-The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Stoller, R.E.; Toloczko, M.B.; Was, G.S.; Certain, A.G.; Dwaraknath, S.; Garner, F.A. On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 310, 75–80. [Google Scholar] [CrossRef]
- Messenger, S.R.; Burke, E.A.; Summers, G.P.; Xapsos, M.A.; Walters, R.J.; Jackson, E.M.; Weaver, B.D. Nonionizing energy loss (NIEL) for heavy ions. IEEE Trans. Nucl. Sci. 1999, 46, 1595–1602. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Guo, H.; Yu, C.; Hu, H.; Liu, Y.; Chen, S. Transient Current Analysis of Silicon Carbide Neutron Detector Using SRIM and TCAD. IEEE Sens. J. 2022, 22, 10620–10629. [Google Scholar] [CrossRef]
- Shao, Z.G.; Chen, D.J.; Lu, H.; Zhang, R.; Cao, D.P.; Luo, W.J.; Zheng, Y.D.; Li, L.; Li, Z.H. High-Gain AlGaN Solar-Blind Avalanche Photodiodes. IEEE Electron Device Lett. 2014, 35, 372–374. [Google Scholar] [CrossRef]
- Osheroff, J.M.; Lauenstein, J.-M.; Ladbury, R.L. LET and Range Characteristics of Proton Recoil Ions in Gallium Nitride (GaN). IEEE Trans. Nucl. Sci. 2021, 68, 597–602. [Google Scholar] [CrossRef]
- Mulligan, P.; Wang, J.; Cao, L. Evaluation of freestanding GaN as an alpha and neutron detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 719, 13–16. [Google Scholar] [CrossRef]
- Shim, H.E.; Park, J.; Yeon, Y.H.; Lee, N.; Gwon, H.-J. Prediction of radiation-induced degradation for a FAPbBr3 perovskite solar cell. J. Korean Phys. Soc. 2022, 80, 191–196. [Google Scholar] [CrossRef]
- Akkerman, A.; Barak, J.; Murat, M. A Survey of the Analytical Methods of Proton-NIEL Calculations in Silicon and Germanium. IEEE Trans. Nucl. Sci. 2020, 67, 1813–1825. [Google Scholar] [CrossRef]
- Messenger, S.R.; Walters, R.J.; Burke, E.A.; Summers, G.P.; Xapsos, M.A. NIEL and Damage Correlations for High-Energy Protons in Gallium Arsenide Devices. IEEE Trans. Nucl. Sci. 2001, 48, 2121–2126. [Google Scholar] [CrossRef]
- Omotoso, E.; Meyer, W.E.; Auret, F.D.; Diale, M.; Ngoepe, P.N.M. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences. Phys. B Condens. Matter 2016, 480, 196–200. [Google Scholar] [CrossRef][Green Version]
- Polyakov, A.Y.; Smirnov, N.B.; Shchemerov, I.V.; Yakimov, E.B.; Pearton, S.J.; Fares, C.; Yang, J.; Ren, F.; Kim, J.; Lagov, P.B.; et al. Defects responsible for charge carrier removal and correlation with deep level introduction in irradiated β-Ga2O3. Appl. Phys. Lett. 2018, 113, 092102. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Density of states Nc (cm−3) | 2.24 × 1018 |
Density of states Nv (cm−3) | 2.51 × 1019 |
Intrinsic carrier concentration ni (cm−3) | 1.06 × 10−10 |
Lifetime (electron) | 1.0 × 10−9 |
Lifetime (hole) | 1.0 × 10−9 |
Effective mass (electron) | 0.2 |
Effective mass (hole) | 1.0 |
Saturation velocity (electron) (cm/s) | 1.91 × 107 |
Saturation velocity (hole) (cm/s) | 1.0 × 106 |
Energy Loss (%) | Ions | Recoils |
---|---|---|
Ionization | 99.70 | 0.06 |
Vacancies | 0.00 | 0.01 |
Phonons | 0.03 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, J.; Wang, N.; Jiang, R.; Hou, Q. Simulation-Based Analysis of the Effect of Alpha Irradiation on GaN Particle Detectors. Micromachines 2023, 14, 1872. https://doi.org/10.3390/mi14101872
Lei J, Wang N, Jiang R, Hou Q. Simulation-Based Analysis of the Effect of Alpha Irradiation on GaN Particle Detectors. Micromachines. 2023; 14(10):1872. https://doi.org/10.3390/mi14101872
Chicago/Turabian StyleLei, Jianming, Nan Wang, Rukai Jiang, and Qianyu Hou. 2023. "Simulation-Based Analysis of the Effect of Alpha Irradiation on GaN Particle Detectors" Micromachines 14, no. 10: 1872. https://doi.org/10.3390/mi14101872
APA StyleLei, J., Wang, N., Jiang, R., & Hou, Q. (2023). Simulation-Based Analysis of the Effect of Alpha Irradiation on GaN Particle Detectors. Micromachines, 14(10), 1872. https://doi.org/10.3390/mi14101872