Synergistic Anticandidal Activities of Greenly Synthesized ZnO Nanomaterials with Commercial Antifungal Agents against Candidal Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of C. sinensis Extract
2.2. Green Bioformulation of ZnO-NPs
2.3. Phytochemical Analysis of C. sinensis Extract
2.4. Characterization of the Eco-Friendly Formulated ZnO-NPs
2.5. Anticandidal Efficacy of ZnO-NPs
2.6. Synergistic Pattern of ZnO-NPs with Antifungals
2.7. In Vitro Biocompatibility Assay
2.8. Cytotoxicity Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Green Biofabrication of ZnO Nanoparticles
3.2. UV Spectral Analysis
3.3. Transmission Electron Microscope (TEM) Examination
3.4. Energy-Dispersive X-ray (EDX) Examination
3.5. Fourier Transform Infrared Spectroscopy (FTIR) Examination
3.6. XRD Investigation of ZnO-NPs
3.7. Zeta Analysis of the Bio-Prepared ZnO-NPs
3.8. Screening of Anticandidal Efficiency of Green Biofabricated ZnO-NPs
3.9. Detection of Synergistic Efficacy of the Bio-Prepared ZnO-NPs with Antifungals
3.10. In Vitro Biocompatibility Assay
3.11. Cytotoxicity Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polvi, E.J.; Li, X.; O’Meara, T.R.; Leach, M.D.; Cowen, L.E. Opportunistic Yeast Pathogens: Reservoirs, Virulence Mechanisms, and Therapeutic Strategies. Cell. Mol. Life Sci. 2015, 72, 2261–2287. [Google Scholar] [CrossRef]
- Oladele, R.; Uwanibe, J.N.; Olawoye, I.B.; Ettu, A.-W.O.; Meis, J.F.; Happi, C.T. Emergence and Genomic Characterization of Multidrug Resistant Candida Auris in Nigeria, West Africa. J. Fungi 2022, 8, 787. [Google Scholar] [CrossRef]
- Czechowicz, P.; Nowicka, J.; Gościniak, G. Virulence Factors of Candida spp. and Host Immune Response Important in the Pathogenesis of Vulvovaginal Candidiasis. Int. J. Mol. Sci. 2022, 23, 5895. [Google Scholar] [CrossRef]
- Pereira, R.; dos Santos Fontenelle, R.O.; de Brito, E.H.S.; de Morais, S.M. Biofilm of Candida Albicans: Formation, Regulation and Resistance. J. Appl. Microbiol. 2021, 131, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.C.D.O.; Vasconcelos, C.C.; Lopes, A.J.O.; Cartágenes, M.D.S.D.S.; Filho, A.K.D.B.; Nascimento, F.R.F.D.; Ramos, R.; Pires, E.R.R.B.; Andrade, M.; Rocha, F.M.G.; et al. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Front. Microbiol. 2018, 9, 1351. [Google Scholar] [CrossRef] [PubMed]
- Berkow, E.L.; Lockhart, S.R. Fluconazole Resistance in Candida Species: A Current Perspective. Infect. Drug Resist. 2017, 10, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Castanheira, M.; Deshpande, L.M.; Davis, A.P.; Carvalhaes, C.G.; Pfaller, M.A. Azole Resistance in Candida Glabrata Clinical Isolates from Global Surveillance Is Associated with Efflux Overexpression. J. Glob. Antimicrob. Resist. 2022, 29, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive Candidiasis. Nat. Rev. Dis. Primer 2018, 4, 18026. [Google Scholar] [CrossRef] [PubMed]
- Flowers, S.A.; Colón, B.; Whaley, S.G.; Schuler, M.A.; Rogers, P.D. Contribution of Clinically Derived Mutations in ERG11 to Azole Resistance in Candida Albicans. Antimicrob. Agents Chemother. 2014, 59, 450–460. [Google Scholar] [CrossRef] [Green Version]
- Yassin, M.T.; Mostafa, A.A.; Al-Askar, A.A.; Bdeer, R. In Vitro Antifungal Resistance Profile of Candida Strains Isolated from Saudi Women Suffering from Vulvovaginitis. Eur. J. Med. Res. 2020, 25, 1. [Google Scholar] [CrossRef]
- Rahimi, H.; Roudbarmohammadi, S.; Delavari, H.H.; Roudbary, M. Antifungal Effects of Indolicidin-Conjugated Gold Nanoparticles against Fluconazole-Resistant Strains of Candida Albicans Isolated from Patients with Burn Infection. Int. J. Nanomed. 2019, 14, 5323–5338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, F.; Shariq, M.; Asif, M.; Siddiqui, M.A.; Malan, P.; Ahmad, F. Green Nanotechnology: Plant-Mediated Nanoparticle Synthesis and Application. Nanomaterials 2022, 12, 673. [Google Scholar] [CrossRef] [PubMed]
- Md Akhir, R.; Umbaidilah, S.Z.; Abdullah, N.A.; Alrokayan, S.A.; Khan, H.A.; Soga, T.; Rusop, M.; Khusaimi, Z. The Potential of Pandanus Amaryllifolius Leaves Extract in Fabrication of Dense and Uniform ZnO Microrods. Micromachines 2020, 11, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shreyash, N.; Bajpai, S.; Khan, M.A.; Vijay, Y.; Tiwary, S.K.; Sonker, M. Green Synthesis of Nanoparticles and Their Biomedical Applications: A Review. ACS Appl. Nano Mater. 2021, 4, 11428–11457. [Google Scholar] [CrossRef]
- Pillai, A.M.; Sivasankarapillai, V.S.; Rahdar, A.; Joseph, J.; Sadeghfar, F.; Rajesh, K.; Kyzas, G.Z. Green Synthesis and Characterization of Zinc Oxide Nanoparticles with Antibacterial and Antifungal Activity. J. Mol. Struct. 2020, 1211, 128107. [Google Scholar] [CrossRef]
- Karageorgou, D.; Zygouri, P.; Tsakiridis, T.; Hammami, M.A.; Chalmpes, N.; Subrati, M.; Sainis, I.; Spyrou, K.; Katapodis, P.; Gournis, D. Green Synthesis and Characterization of Silver Nanoparticles with High Antibacterial Activity Using Cell Extracts of Cyanobacterium Pseudanabaena/Limnothrix sp. Nanomaterials 2022, 12, 2296. [Google Scholar] [CrossRef]
- Miu, B.A.; Dinischiotu, A. New Green Approaches in Nanoparticles Synthesis: An Overview. Molecules 2022, 27, 6472. [Google Scholar] [CrossRef]
- Abdelmigid, H.M.; Hussien, N.A.; Alyamani, A.A.; Morsi, M.M.; AlSufyani, N.M.; Kadi, H.A. Green Synthesis of Zinc Oxide Nanoparticles Using Pomegranate Fruit Peel and Solid Coffee Grounds vs. Chemical Method of Synthesis, with Their Biocompatibility and Antibacterial Properties Investigation. Molecules 2022, 27, 1236. [Google Scholar] [CrossRef]
- Al Mutairi, J.F.; Al-Otibi, F.; Alhajri, H.M.; Alharbi, R.I.; Alarifi, S.; Alterary, S.S. Antimicrobial Activity of Green Silver Nanoparticles Synthesized by Different Extracts from the Leaves of Saudi Palm Tree (Phoenix dactylifera L.). Molecules 2022, 27, 3113. [Google Scholar] [CrossRef]
- Yassin, M.T.; Mostafa, A.A.-F.; Al-Askar, A.A.; Al-Otibi, F.O. Facile Green Synthesis of Silver Nanoparticles Using Aqueous Leaf Extract of Origanum Majorana with Potential Bioactivity against Multidrug Resistant Bacterial Strains. Crystals 2022, 12, 603. [Google Scholar] [CrossRef]
- Abomuti, M.A.; Danish, E.Y.; Firoz, A.; Hasan, N.; Malik, M.A. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia Officinalis Leaf Extract and Their Photocatalytic and Antifungal Activities. Biology 2021, 10, 1075. [Google Scholar] [CrossRef]
- Sivasankarapillai, V.S.; Krishnamoorthy, N.; Eldesoky, G.E.; Wabaidur, S.M.; Islam, M.A.; Dhanusuraman, R.; Ponnusamy, V.K. One-Pot Green Synthesis of ZnO Nanoparticles Using Scoparia Dulcis Plant Extract for Antimicrobial and Antioxidant Activities. Appl. Nanosci. 2022; online ahead of print. [Google Scholar] [CrossRef]
- Gur, T.; Meydan, I.; Seckin, H.; Bekmezci, M.; Sen, F. Green Synthesis, Characterization and Bioactivity of Biogenic Zinc Oxide Nanoparticles. Environ. Res. 2022, 204, 111897. [Google Scholar] [CrossRef] [PubMed]
- Ashwini, J.; Aswathy, T.R.; Rahul, A.B.; Thara, G.M.; Nair, A.S. Synthesis and Characterization of Zinc Oxide Nanoparticles Using Acacia Caesia Bark Extract and Its Photocatalytic and Antimicrobial Activities. Catalysts 2021, 11, 1507. [Google Scholar] [CrossRef]
- Prexha; Grewal, S.; Promila; Kumari, S.; Goel, S. In Vitro Antifungal and Antibacterial Effects of Biosynthesized Zinc Oxide Nanoparticles Against Selected Pathogenic and Non-Pathogenic Strains. J. Nanosci. Nanotechnol. 2021, 21, 3539–3546. [Google Scholar] [CrossRef]
- CLSI. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts; CLSI m44-a; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2004; Volume 23. [Google Scholar]
- CLSI. Performance Standards for Antifungal Susceptibility Testing of Yeasts, CLSI Supplement m60, 1st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Lo, W.-H.; Deng, F.-S.; Chang, C.-J.; Lin, C.-H. Synergistic Antifungal Activity of Chitosan with Fluconazole against Candida Albicans, Candida Tropicalis, and Fluconazole-Resistant Strains. Molecules 2020, 25, 5114. [Google Scholar] [CrossRef]
- Moteriya, P.; Padalia, H.; Chanda, S. Characterization, Synergistic Antibacterial and Free Radical Scavenging Efficacy of Silver Nanoparticles Synthesized Using Cassia Roxburghii Leaf Extract. J. Genet. Eng. Biotechnol. 2017, 15, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, G.; Thirumarimurugan, M.; Muthukumaran, C. Green Synthesis of ZnO Nanoparticles Using Tecoma Castanifolia Leaf Extract: Characterization and Evaluation of Its Antioxidant, Bactericidal and Anticancer Activities. Microchem. J. 2019, 145, 578–587. [Google Scholar] [CrossRef]
- Hao, R.; Li, D.; Zhang, J.; Jiao, T. Green Synthesis of Iron Nanoparticles Using Green Tea and Its Removal of Hexavalent Chromium. Nanomaterials 2021, 11, 650. [Google Scholar] [CrossRef]
- Xu, Q.; Li, W.; Weng, X.; Owens, G.; Chen, Z. Mechanism and Impact of Synthesis Conditions on the One-Step Green Synthesis of Hybrid RGO@Fe/Pd Nanoparticles. Sci. Total Environ. 2020, 710, 136308. [Google Scholar] [CrossRef]
- Fuku, X.; Diallo, A.; Maaza, M. Nanoscaled Electrocatalytic Optically Modulated ZnO Nanoparticles through Green Process of Punica Granatum L. and Their Antibacterial Activities. Int. J. Electrochem. 2016, 2016, 4682967. [Google Scholar] [CrossRef] [Green Version]
- Hsu, W.-D.; Tsai, J.-K.; Meen, T.-H.; Wu, T.-C.; He, Y.-K.; Lai, Y.-D. Self-Etching-Induced Morphological Evolution of ZnO Microrods Grown on FTO Glass by Hydrothermal Method. Nanoscale Res. Lett. 2015, 10, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falih, A.; Ahmed, N.M.; Rashid, M. Green Synthesis of Zinc Oxide Nanoparticles by Fresh and Dry Alhagi Plant. Mater. Today Proc. 2022, 49, 3624–3629. [Google Scholar] [CrossRef]
- Hussain, A.; Oves, M.; Alajmi, M.F.; Hussain, I.; Amir, S.; Ahmed, J.; Rehman, M.T.; El-Seedi, H.R.; Ali, I. Biogenesis of ZnO Nanoparticles Using Pandanus Odorifer Leaf Extract: Anticancer and Antimicrobial Activities. RSC Adv. 2019, 9, 15357–15369. [Google Scholar] [CrossRef] [Green Version]
- Kotakadi, V.S.; Gaddam, S.A.; Kotha, P.; Allagadda, R.; Rao Ch, A.; DVR, S.G. Bio-Inspired Multifunctional Zinc Oxide Nanoparticles by Leaf Extract of Andrographis Serpilifolia and Their Enhanced Antioxidant, Antimicrobial, and Antidiabetic Activity—A 3-in-1 System. Part. Sci. Technol. 2022, 40, 485–499. [Google Scholar] [CrossRef]
- Panahi, R.; Jafarirad, S.; Samadi, A.; Barzegar, A. Synthesis, Characterization and Fluorescence Properties of Novel Porous Fe/ZnO Nano-Hybrid Assemblies by Using Berberis Thunbergii Extract. J. Fluoresc. 2021, 31, 1191–1202. [Google Scholar] [CrossRef]
- Sadiq, H.; Sher, F.; Sehar, S.; Lima, E.C.; Zhang, S.; Iqbal, H.M.; Zafar, F.; Nuhanović, M. Green Synthesis of ZnO Nanoparticles from Syzygium Cumini Leaves Extract with Robust Photocatalysis Applications. J. Mol. Liq. 2021, 335, 116567. [Google Scholar] [CrossRef]
- Sri, D.; YelamandaRao, K.; Basha, S.; Lakshmi, M.; Reddy, L.V.; Mannarapu, M.; GangaiahDamu, A. Biosynthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Andrographis Alata: Characterization, Optimization and Assessment of Their Antibacterial, Antioxidant, Antidiabetic and Anti-Alzheimer’s Properties. J. Mol. Struct. 2022, 1273, 134264. [Google Scholar]
- Vijayakumar, S.; Vinoj, G.; Malaikozhundan, B.; Shanthi, S.; Vaseeharan, B. Plectranthus Amboinicus Leaf Extract Mediated Synthesis of Zinc Oxide Nanoparticles and Its Control of Methicillin Resistant Staphylococcus Aureus Biofilm and Blood Sucking Mosquito Larvae. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2015, 137, 886–891. [Google Scholar] [CrossRef]
- Nava, O.J.; Luque, P.A.; Gómez-Gutiérrez, C.M.; Vilchis-Nestor, A.R.; Castro-Beltrán, A.; Mota-González, M.L.; Olivas, A. Influence of Camellia Sinensis Extract on Zinc Oxide Nanoparticle Green Synthesis. J. Mol. Struct. 2017, 1134, 121–125. [Google Scholar] [CrossRef]
- Yassin, M.T.; Al-Askar, A.A.; Maniah, K.; Al-Otibi, F.O. Green Synthesis of Zinc Oxide Nanocrystals Utilizing Origanum Majorana Leaf Extract and Their Synergistic Patterns with Colistin against Multidrug-Resistant Bacterial Strains. Crystals 2022, 12, 1513. [Google Scholar] [CrossRef]
- Hayat, S.; Ashraf, A.; Zubair, M.; Aslam, B.; Siddique, M.H.; Khurshid, M.; Saqalein, M.; Khan, A.M.; Almatroudi, A.; Naeem, Z. Biofabrication of ZnO Nanoparticles Using Acacia Arabica Leaf Extract and Their Antibiofilm and Antioxidant Potential against Foodborne Pathogens. PLoS ONE 2022, 17, e0259190. [Google Scholar] [CrossRef]
- Abdullah, F.H.; Bakar, N.A.; Bakar, M.A. Comparative Study of Chemically Synthesized and Low Temperature Bio-Inspired Musa Acuminata Peel Extract Mediated Zinc Oxide Nanoparticles for Enhanced Visible-Photocatalytic Degradation of Organic Contaminants in Wastewater Treatment. J. Hazard. Mater. 2021, 406, 124779. [Google Scholar] [CrossRef] [PubMed]
- Souza, T.G.; Ciminelli, V.S.; Mohallem, N.D.S. A Comparison of TEM and DLS Methods to Characterize Size Distribution of Ceramic Nanoparticles. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2016; Volume 733, p. 012039. [Google Scholar]
- Elsayed, M.S.; Ahmed, I.A.; Bader, D.M.; Hassan, A.F. Green Synthesis of Nano Zinc Oxide/Nanohydroxyapatite Composites Using Date Palm Pits Extract and Eggshells: Adsorption and Photocatalytic Degradation of Methylene Blue. Nanomaterials 2021, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Mahendra, C.; Chandra, M.N.; Murali, M.; Abhilash, M.R.; Singh, S.B.; Satish, S.; Sudarshana, M.S. Phyto-Fabricated ZnO Nanoparticles from Canthium dicoccum (L.) for Antimicrobial, Anti-Tuberculosis and Antioxidant Activity. Process Biochem. 2020, 89, 220–226. [Google Scholar] [CrossRef]
- Clogston, J.D.; Patri, A.K. Zeta Potential Measurement. In Characterization of Nanoparticles Intended for Drug Delivery; Springer: Berlin/Heidelberg, Germany, 2011; pp. 63–70. [Google Scholar]
- Elumalai, K.; Velmurugan, S. Green Synthesis, Characterization and Antimicrobial Activities of Zinc Oxide Nanoparticles from the Leaf Extract of Azadirachta indica (L.). Appl. Surf. Sci. 2015, 345, 329–336. [Google Scholar] [CrossRef]
- Elumalai, K.; Velmurugan, S.; Ravi, S.; Kathiravan, V.; Ashokkumar, S. Bio-Fabrication of Zinc Oxide Nanoparticles Using Leaf Extract of Curry Leaf (Murraya koenigii) and Its Antimicrobial Activities. Mater. Sci. Semicond. Process. 2015, 34, 365–372. [Google Scholar] [CrossRef]
- Jayaseelan, C.; Rahuman, A.A.; Kirthi, A.V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Gaurav, K.; Karthik, L.; Rao, K.B. Novel Microbial Route to Synthesize ZnO Nanoparticles Using Aeromonas Hydrophila and Their Activity against Pathogenic Bacteria and Fungi. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2012, 90, 78–84. [Google Scholar] [CrossRef]
- Sun, Q.; Li, J.; Le, T. Zinc Oxide Nanoparticle as a Novel Class of Antifungal Agents: Current Advances and Future Perspectives. J. Agric. Food Chem. 2018, 66, 11209–11220. [Google Scholar] [CrossRef]
- Nagaraj, S.; Manivannan, S.; Narayan, S. Potent Antifungal Agents and Use of Nanocarriers to Improve Delivery to the Infected Site: A Systematic Review. J. Basic Microbiol. 2021, 61, 849–873. [Google Scholar] [CrossRef]
- Ahmed, M.Z.; Rao, T.; Saeed, A.; Mutahir, Z.; Hameed, S.; Inayat, S.; Shahzad, H.; Ullah, N.; Abaid-Ullah, M.; Ibrahim, M. Antifungal Drugs: Mechanism of Action and Resistance. In Biochemistry of Drug Resistance; Springer: Berlin/Heidelberg, Germany, 2021; pp. 143–165. [Google Scholar]
- Khezerlou, A.; Alizadeh-Sani, M.; Azizi-Lalabadi, M.; Ehsani, A. Nanoparticles and Their Antimicrobial Properties against Pathogens Including Bacteria, Fungi, Parasites and Viruses. Microb. Pathog. 2018, 123, 505–526. [Google Scholar] [CrossRef]
- Naiel, B.; Fawzy, M.; Halmy, M.W.A.; Mahmoud, A.E.D. Green Synthesis of Zinc Oxide Nanoparticles Using Sea Lavender (Limonium pruinosum L. Chaz.) Extract: Characterization, Evaluation of Anti-Skin Cancer, Antimicrobial and Antioxidant Potentials. Sci. Rep. 2022, 12, 20370. [Google Scholar] [CrossRef] [PubMed]
- Smijs, T.G.; Pavel, S. Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreens: Focus on Their Safety and Effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95. [Google Scholar] [CrossRef] [PubMed]
Compounds | Chemical Formula | Chemical Structure | Mol. Weight | RT | % of Total |
---|---|---|---|---|---|
Catechol | C6H6O2 | 110.11 | 12.465 | 6.53 | |
1,1’-Biphenyl, 2-ethyl- | C14H14 | 182.26 | 13.671 | 5.19 | |
Methoxy resorcinol | C7H8O3 | 140.14 | 15.263 | 3.78 | |
1,2,3-Benzenetriol | C6H6O3 | 126.11 | 17.461 | 10.79 | |
1,3,5-Benzenetriol | C6H6O3 | 126.11 | 24.689 | 19.56 | |
6-Hydroxy-4,4,7a-trimethyl-5,6,7a-tetrahydrobenzofuran | C11H16O3 | 196.24 | 25.537 | 4.63 | |
Caffeine | C8H10N4O2 | 194.19 | 27.167 | 49.51 |
No. | Absorption Peak (cm−1) | Appearance | Functional Groups | Molecular Motion |
---|---|---|---|---|
1 | 3434.74 | Strong, broad | Alcohols and phenols | O–H stretching |
2 | 2922.35 | Weak | Alkanes | C–H stretching |
3 | 1630.70 | Medium | Alkenyl group | C=C stretching |
4 | 1371.81 | Weak | Carboxylic acids | C=C stretching |
5 | 1220.18 | Weak | Alcohols and phenols | OH bending |
6 | 1078.88 | Weak | Aliphatic amines | C–N stretching |
7 | 575.01 | Weak | Metal oxide bonds | Zn–O stretching |
Fungal Strains | Inhibition Zone Diameter (mm) | |||
---|---|---|---|---|
ZnO-NPs (50 µg/Disk) | ZnO-NPs (100 µg/Disk) | Terbinafine (30 µg/Disk) | −ve Control | |
C. albicans | 30.56 ± 0.27 | 32.34 ± 0.11 | 26.12 ± 0.09 | 0.00 ± 0.00 |
C. tropicalis | 35.16 ± 0.13 | 37.87 ± 0.24 | 35.34 ± 0.41 | 0.00 ± 0.00 |
C. glabrata | 12.78 ± 0.17 | 13.24 ± 0.15 | 8.65 ± 0.21 | 0.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yassin, M.T.; Elgorban, A.M.; Al-Askar, A.A.; Sholkamy, E.N.; Ameen, F.; Maniah, K. Synergistic Anticandidal Activities of Greenly Synthesized ZnO Nanomaterials with Commercial Antifungal Agents against Candidal Infections. Micromachines 2023, 14, 209. https://doi.org/10.3390/mi14010209
Yassin MT, Elgorban AM, Al-Askar AA, Sholkamy EN, Ameen F, Maniah K. Synergistic Anticandidal Activities of Greenly Synthesized ZnO Nanomaterials with Commercial Antifungal Agents against Candidal Infections. Micromachines. 2023; 14(1):209. https://doi.org/10.3390/mi14010209
Chicago/Turabian StyleYassin, Mohamed Taha, Abdallah M. Elgorban, Abdulaziz A. Al-Askar, Essam Nageh Sholkamy, Fuad Ameen, and Khalid Maniah. 2023. "Synergistic Anticandidal Activities of Greenly Synthesized ZnO Nanomaterials with Commercial Antifungal Agents against Candidal Infections" Micromachines 14, no. 1: 209. https://doi.org/10.3390/mi14010209
APA StyleYassin, M. T., Elgorban, A. M., Al-Askar, A. A., Sholkamy, E. N., Ameen, F., & Maniah, K. (2023). Synergistic Anticandidal Activities of Greenly Synthesized ZnO Nanomaterials with Commercial Antifungal Agents against Candidal Infections. Micromachines, 14(1), 209. https://doi.org/10.3390/mi14010209