Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application
Abstract
:1. Introduction
2. Designs and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, C.; Ren, Z.; Wei, J.; Lee, C. Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications. Iscience 2022, 25, 103799. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-S.; Xu, Z. Reconfigurable metamaterials for optoelectronic applications. Int. J. Optomechatron. 2020, 14, 78–93. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental Verification of a Negative Index of Refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.M.; Liu, A.Q.; Zhang, W.; Tao, J.F.; Bourouina, T.; Teng, J.; Zhang, X.H.; Wu, Q.Y.S.; Tanoto, H.; Guo, H.C.; et al. Polarization dependent state to polarization independent state change in THz metamaterials. Appl. Phys. Lett. 2011, 99, 221102. [Google Scholar] [CrossRef]
- Vivek, A.; Shambavi, K.; Alex, Z.C. A review: Metamaterial sensors for material characterization. Sens. Rev. 2019, 39, 417–432. [Google Scholar] [CrossRef]
- Wu, L.; Cheng, K.; Lin, Y.-S. All-Dielectric Nanostructured Metasurfaces with Ultrahigh Color Purity and Selectivity for Refractive Index Sensing Applications. Results Phys. 2022, 43, 106092. [Google Scholar] [CrossRef]
- Fang, R.; Yu, Z.; Lin, Y.-S. Lithography-Free Fabrication and Optical Characterizations of Nanotextured Nickle Dewetting Thin-Film for Broadband Absorbers. Nano Futures 2022, 6, 035003. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, W.; Lin, Y.-S.; Yang, B.-R. A tunable color filter using a hybrid metasurface composed of ZnO nanopillars and Ag nanoholes. Nanoscale Adv. 2022, 4, 3624–3633. [Google Scholar] [CrossRef] [PubMed]
- Larouche, S.; Tsai, Y.-J.; Tyler, T.; Jokerst, N.M.; Smith, D.R. Infrared metamaterial phase holograms. Nat. Mater. 2012, 11, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Lin, Y.-S. Flexible and Controllable Metadevice Using Self-Assembly MEMS Actuator. Nano Lett. 2021, 21, 3205–3210. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, D.; Hui, X.; Mu, X. Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: Pushing the frontier of ultrasensitive on-chip sensing. Int. J. Optomechatron. 2021, 15, 97–119. [Google Scholar] [CrossRef]
- Mo, Y.; Zhong, J.; Lin, Y.-S. Tunable chevron-shaped infrared metamaterial. Mater. Lett. 2019, 263, 127291. [Google Scholar] [CrossRef]
- Liang, Z.; Wen, Y.; Zhang, Z.; Liang, Z.; Xu, Z.; Lin, Y.-S. Plasmonic metamaterial using metal-insulator-metal nanogratings for high-sensitive refraction index sensor. Results Phys. 2019, 15, 102602. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, D.; Lin, Y.-S. Tunable infrared meta-absorber with single- and dual-absorption resonances. Surf. Interfaces 2022, 32, 102178. [Google Scholar] [CrossRef]
- Zheng, D.; Lin, Y.-S. Tunable Dual-Split-Disk Resonator with Electromagnetically Induced Transparency Characteristic. Adv. Mater. Technol. 2020, 5, 202000584. [Google Scholar] [CrossRef]
- Ou, H.; Lu, F.; Xu, Z.; Lin, Y.-S. Terahertz Metamaterial with Multiple Resonances for Biosensing Application. Nanomaterials 2020, 10, 1038. [Google Scholar] [CrossRef]
- Hu, X.; Zheng, D.; Lin, Y.-S. Actively tunable terahertz metamaterial with single-band and dual-band switching characteristic. Appl. Phys. A 2020, 126, 110. [Google Scholar] [CrossRef]
- Lu, F.; Ou, H.; Liao, Y.; Zhu, F.; Lin, Y.-S. Actively switchable terahertz metamaterial. Results Phys. 2019, 15, 102756. [Google Scholar] [CrossRef]
- Liu, X.; Qiao, Q.; Dong, B.; Liu, W.; Xu, C.; Xu, S.; Zhou, G. MEMS enabled suspended silicon waveguide platform for long-wave infrared modulation applications. Int. J. Optomechatron. 2022, 16, 42–57. [Google Scholar] [CrossRef]
- Dixit, A.S.; Kumar, S. Performance enhancement of antipodal Vivaldi antenna array using metamaterial for 38 GHz band of 5G applications. Opt. Mater. 2022, 133, 112811. [Google Scholar] [CrossRef]
- Liu, L.; Liu, T.; Zheng, Y.; Chernogor, L.F.; Jin, Z.-J.; Sun, Z. Archimedean spiral antenna based on metamaterial structure with wideband circular polarization. AEU-Int. J. Electron. Commun. 2022, 152, 154257. [Google Scholar] [CrossRef]
- Kang, M.; Feng, T.; Wang, H.-T.; Li, J. Wave front engineering from an array of thin aperture antennas. Opt. Express 2012, 20, 15882–15890. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Fang, B.; Li, J.; Wang, Z.; Cai, J.; Lu, J.; Wu, Y.; Li, C.; Jing, X. Flexible control of the focal spot with encoding metalens based on the digital addition principle of metasurfaces. Opt. Lasers Eng. 2022, 156, 107084. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Yang, W.; Ji, Z.; Jin, L.; Ma, X.; Song, Q.; Boltasseva, A.; Han, J.; Shalaev, V.M.; et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun. 2021, 12, 5560. [Google Scholar] [CrossRef]
- Kim, M.; Pallecchi, E.; Ge, R.; Wu, X.; Ducournau, G.; Lee, J.C.; Happy, H.; Akinwande, D. Analogue switches made from boron nitride monolayers for application in 5G and terahertz communication systems. Nat. Electron. 2020, 3, 479–485. [Google Scholar] [CrossRef]
- Reichel, K.S.; Lozada-Smith, N.; Joshipura, I.D.; Ma, J.; Shrestha, R.; Mendis, R.; Dickey, M.D.; Mittleman, D.M. Electrically reconfigurable terahertz signal processing devices using liquid metal components. Nat. Commun. 2018, 9, 4202. [Google Scholar] [CrossRef] [Green Version]
- Manjappa, M.; Pitchappa, P.; Singh, N.; Wang, N.; Zheludev, N.I.; Lee, C.; Singh, R. Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nat. Commun. 2018, 9, 4056. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-S.; Feng, N.; Xu, Y.; Huang, Z.; Wen, K.; Xiong, X. Theoretical and simulation study of dynamically tunable sensor based on liquid crystal-modulated Fano resonator in terahertz band. Opt. Laser Technol. 2022, 155, 108350. [Google Scholar] [CrossRef]
- Sun, M.; Maqbool, E.; Han, Z. Terahertz sensing with high sensitivity and substance identification capability using a novel High-quality resonance supported by a thin structured silicon film. Opt. Laser Technol. 2022, 152, 108177. [Google Scholar] [CrossRef]
- Ma, T.; Li, J.; Luo, Z. High Q-factor toroidal resonances driven by bound states in the continuum in all-dielectric metamaterial at terahertz frequencies. Opt. Laser Technol. 2023, 157, 108745. [Google Scholar] [CrossRef]
- Shinichi, W. Terahertz Polarization Imaging and Its Applications. Photonics 2018, 5, 58. [Google Scholar]
- He, J.; Dong, T.; Chi, B.; Zhang, Y. Metasurfaces for Terahertz Wavefront Modulation: A Review. J. Infrared Millim. Terahertz Waves 2020, 41, 607–631. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ando, M.; Nagata, H.; Yoshida, S.; Sakai, K.; Kiwa, T. Multifunctional terahertz microscopy for biochemical and chemical imaging and sensing. Biosens. Bioelectron. 2023, 220, 114901. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Cheng, Y. Design of a six-band terahertz metamaterial absorber for temperature sensing application. Opt. Mater. 2019, 88, 674–679. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Ren, Z.; Ma, Y.; Dong, B.; Zhou, G.; Lee, C. Progress of optomechanical micro/nano sensors: A review. Int. J. Optomechatron. 2021, 15, 120–159. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z.; Kaushik, A.; Manickam, P.; Ghoreishi, S.A. Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins. Biosens. Bioelectron. 2021, 177, 112971. [Google Scholar] [CrossRef]
- Velez, P.; Munoz-Enano, J.; Grenier, K.; Mata-Contreras, J.; Dubuc, D.; Martin, F. Split Ring Resonator-Based Microwave Fluidic Sensors for Electrolyte Concentration Measurements. IEEE Sens. J. 2018, 19, 2562–2569. [Google Scholar] [CrossRef]
- Boulais, K.A.; Rule, D.W.; Simmons, S.; Santiago, F.; Gehman, V.; Long, K.; Rayms-Keller, A. Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs. Appl. Phys. Lett. 2008, 93, 043518. [Google Scholar] [CrossRef]
- Moghbeli, E.; Askari, H.R.; Forouzeshfard, M.R. The effect of geometric parameters of a single-gap SRR metamaterial on its electromagnetic properties as a unit cell of interior invisibility cloak in the microwave regime. Opt. Laser Technol. 2018, 108, 626–633. [Google Scholar] [CrossRef]
- Ekmekci, E.; Topalli, K.; Akin, T.; Turhan-Sayan, G. A tunable multi-band metamaterial design using micro-split SRR structures. Opt. Express 2009, 17, 16046–16058. [Google Scholar] [CrossRef]
- Yu, J.; Ma, H.; Wang, J.; Feng, M.; Li, Y.; Qu, S. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Phys. Sin. 2015, 64, 178101. [Google Scholar]
- Fischer, A.C.; Forsberg, F.; Lapisa, M.; Bleiker, S.J.; Stemme, G.; Roxhed, N.; Niklaus, F. Integrating MEMS and ICs. Microsyst. Nanoeng. 2015, 1, 15005. [Google Scholar] [CrossRef]
- Liu, H.-F.; Luo, Z.-C.; Hu, Z.-K.; Yang, S.-Q.; Tu, L.-C.; Zhou, Z.-B.; Kraft, M. A review of high-performance MEMS sensors for resource exploration and geophysical applications. Pet. Sci. 2022, 19, 2631–2648. [Google Scholar] [CrossRef]
- Wang, T.; Guan, Y.; Pang, J.; Li, N.; Nie, J.; Xie, J. An accurate dew point sensor based on MEMS piezoelectric resonator and piecewise fitting method. Sens. Actuators B Chem. 2022, 370, 132411. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, W.; Wu, B.; Zhang, Z.; He, J.; Wang, R.; Xue, C. A novel two-dimensional high SNR MEMS shear stress sensor for ocean turbulence. Sens. Actuators A Phys. 2021, 330, 112891. [Google Scholar] [CrossRef]
- Hsueh, T.; Li, P.; Fang, S.; Hsu, C. A vertical CuO-NWS/MEMS NO2 gas sensor that is produced by sputtering. Sens. Actuators B Chem. 2022, 355, 131260. [Google Scholar] [CrossRef]
- Cui, J.; Li, Y.; Yang, Y.; Shi, P.; Wang, B.; Wang, S.; Zhang, G.; Zhang, W. Design and optimization of MEMS heart sound sensor based on bionic structure. Sens. Actuators A Phys. 2021, 333, 113188. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Bin Sulaiman, O.; Dong, B.; Lee, C. Development Trends and Perspectives of Future Sensors and MEMS/NEMS. Micromachines 2019, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Ekmekci, E.; Kose, U.; Cinar, A.; Ertan, O.; Ekmekci, Z. The use of metamaterial type double-sided resonator structures in humidity and concentration sensing applications. Sens. Actuators A Phys. 2019, 297, 111559. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Jaruwongrungsee, K.; Tuantranont, A.; Fumeaux, C.; Abbott, D. Metamaterial-based microfluidic sensor for dielectric characterization. Sens. Actuators A Phys. 2013, 189, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-S.; Qian, Y.; Ma, F.; Liu, Z.; Kropelnicki, P.; Lee, C. Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators. Appl. Phys. Lett. 2013, 102, 111908. [Google Scholar] [CrossRef] [Green Version]
- Katsarakis, N.; Konstantinidis, G.; Kostopoulos, A.; Penciu, R.S.; Gundogdu, T.F.; Kafesaki, M.; Economou, E.; Koschny, T.; Soukoulis, C.M. Magnetic response of split-ring resonators in the far-infrared frequency regime. Opt. Lett. 2005, 30, 1348–1350. [Google Scholar] [CrossRef] [PubMed]
- Soukoulis, C.M.; Kafesaki, M.; Economou, E.N. Negative-Index Materials: New Frontiers in Optics. Adv. Mater. 2006, 18, 1941–1952. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, W.-H.; Li, B.; Fu, S.-H.; Lin, Y.-S. Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application. Micromachines 2023, 14, 169. https://doi.org/10.3390/mi14010169
Lai W-H, Li B, Fu S-H, Lin Y-S. Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application. Micromachines. 2023; 14(1):169. https://doi.org/10.3390/mi14010169
Chicago/Turabian StyleLai, Wei-Hsi, Binghui Li, Shih-Huai Fu, and Yu-Sheng Lin. 2023. "Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application" Micromachines 14, no. 1: 169. https://doi.org/10.3390/mi14010169
APA StyleLai, W.-H., Li, B., Fu, S.-H., & Lin, Y.-S. (2023). Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application. Micromachines, 14(1), 169. https://doi.org/10.3390/mi14010169