Thermal Performance Improvement of AlGaN/GaN HEMTs Using Nanocrystalline Diamond Capping Layers
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Analysis of Output and Transfer Characteristics
3.2. Analysis of Small Signal Gain and Cut-Off Frequency Characteristics
3.3. Analysis of Heat Dissipation Capability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, T.J.; Hobart, K.D.; Tadjer, M.J.; Koehler, A.D.; Imhoff, E.A.; Hite, J.K.; Feygelson, T.I.; Pate, B.B.; Eddy, C.R., Jr.; Kub, F.J. Nanocrystalline diamond integration with III-Nitride HEMTs. ECS J. Solid State Sci. Technol. 2017, 6, Q3036–Q3039. [Google Scholar] [CrossRef]
- Arivazhagan, L.; Nirmal, D.; Reddy, P.K.; Ajayan, J.; Godfrey, D.; Prajoon, P.; Ray, A. A numerical investigation of heat suppression in HEMT for power electronics application. Silicon 2021, 13, 3039–3046. [Google Scholar] [CrossRef]
- Cuenca, J.A.; Smith, M.D.; Field, D.E.; Massabuau, F.C.P.; Mandal, S.; Pomeroy, J.; Wallis, D.J.; Oliver, R.A.; Thayne, I.; Kuball, M.; et al. Thermal stress modelling of diamond on GaN/III-Nitride membranes. Carbon 2021, 174, 647–661. [Google Scholar] [CrossRef]
- Ahmed, R.; Siddique, A.; Anderson, J.; Gautam, C.; Holtz, M.; Piner, E.L. Integration of GaN and diamond using epitaxial lateral overgrowth. ACS Appl. Mater. Interfaces 2020, 12, 39397–39404. [Google Scholar] [CrossRef] [PubMed]
- Belkacemi, K.; Hocine, R. Efficient 3D-TLM modeling and simulation for the thermal management of microwave AlGaN/GaN HEMT used in high power amplifiers SSPA. J. Low Power Electron. Appl. 2018, 8, 23. [Google Scholar] [CrossRef]
- Guggenheim, R.; Rothschild, J.A.; Rodes, L.; Hoffman, A. Thermal characteristics of diamond film coatings for GaN HEMT devices. In Proceedings of the 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), Tel Aviv, Israel, 2–4 November 2015. [Google Scholar]
- Malakoutian, M.; Laurent, M.A.; Chowdhury, S. A study on the growth window of polycrystalline diamond on Si3N4-coated N-polar GaN. Crystals 2019, 9, 498. [Google Scholar] [CrossRef]
- Nigam, A.; Bhat, T.N.; Rajamani, S.; Dolmanan, S.B.; Tripathy, S.; Kumar, M. Effect of self-heating on electrical characteristics of AlGaN/ GaN HEMT on Si (111) substrate. AIP Adv. 2017, 7, 085015. [Google Scholar] [CrossRef]
- Ahmed, R.; Siddique, A.; Anderson, J.; Engdahl, C.; Holtz, M.; Piner, E. Selective area deposition of hot filament CVD diamond on 100 mm MOCVD grown AlGaN/GaN wafers. Cryst. Growth Des. 2019, 19, 672–677. [Google Scholar] [CrossRef]
- Wang, A.; Tadjer, M.J.; Anderson, T.J.; Baranyai, R.; Pomeroy, J.W.; Feygelson, T.I.; Hobart, K.D.; Pate, B.B.; Calle, F. Impact of intrinsic stress in diamond capping layers on the electrical behavior of AlGaN/GaN HEMTs. IEEE Trans. Electron. Devices 2013, 60, 3149–3156. [Google Scholar] [CrossRef]
- Tadjer, M.J.; Anderson, T.J.; Hobart, K.D.; Feygelson, T.I.; Caldwell, J.D.; Eddy, C.R.; Kub, F.J.; Butler, J.E.; Pate, B.; Melngailis, J. Reduced self-heating in AlGaN/GaN HEMTs using nanocrystalline nanocrystalline diamond capping Layers. IEEE Electron. Device Lett. 2012, 33, 23–25. [Google Scholar] [CrossRef]
- Nosaeva, K.; Weimann, N.; Rudolph, M.; John, W.; Krueger, O.; Heinrich, W. Improved thermal management of InP transistors in transferred-substrate technology with diamond heat-spreading layer. Electron. Lett. 2015, 51, 1010–1012. [Google Scholar] [CrossRef]
- Seelmann-Eggebert, M.; Meisen, P.; Schaudel, F.; Koidl, P.; Vescan, A.; Leier, H. Heat spreading nanocrystalline diamond capping layers for GaN-based high power transistor devices. Diam. Relat. Mater. 2010, 10, 744–749. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, W.S.; Yin, W.Y.; Zhao, Z.G.; Zhou, H.J. Impacts of diamond heat spreader on the thermo-mechanical characteristics of high-power AlGaN/GaN HEMTs. Diam. Relat. Mater. 2015, 20, 5–31. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, J.W.; Sun, H.R.; Guo, H.X.; Dai, B.; Zhu, J.Q. Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance. Chin. Phys. B 2019, 28, 060701. [Google Scholar] [CrossRef]
- Malakoutian, M.; Ren, C.; Woo, K.; Li, H.; Chowdhury, S. Development of polycrystalline diamond compatible with the latest N-polar GaN mm-wave technology. Cryst. Growth Des. 2021, 21, 2624−2632. [Google Scholar] [CrossRef]
- Field, D.E.; Cuenca, J.A.; Smith, M.; Fairclough, S.M.; Massabuau, F.C.P.; Pomeroy, J.W.; Williams, O.; Oliver, R.A.; Thayne, I.; Kuball, M. Crystalline interlayers for reducing the effective thermal boundary resistance in GaN-on-diamond. ACS Appl. Mater. Interfaces 2020, 12, 54138–54145. [Google Scholar] [CrossRef]
- Guo, H.X.; Li, Y.Z.; Kong, Y.C.; Chen, T.S. Analysis of Heat dissipation of nanocrystalline diamond capping layers for GaN HEMTs applications. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chongqing, China, 23 December 2021. [Google Scholar]
Definition | Small Signal Gain (10 GHz) | Cut-Off Frequency |
---|---|---|
NDC-GaN HEMTs | 10.83–11.80 dB | 34.6 GHz |
SiN-GaN HEMTs | 7.91–8.55 dB | 34.0 GHz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Li, Y.; Yu, X.; Zhou, J.; Kong, Y. Thermal Performance Improvement of AlGaN/GaN HEMTs Using Nanocrystalline Diamond Capping Layers. Micromachines 2022, 13, 1486. https://doi.org/10.3390/mi13091486
Guo H, Li Y, Yu X, Zhou J, Kong Y. Thermal Performance Improvement of AlGaN/GaN HEMTs Using Nanocrystalline Diamond Capping Layers. Micromachines. 2022; 13(9):1486. https://doi.org/10.3390/mi13091486
Chicago/Turabian StyleGuo, Huaixin, Yizhuang Li, Xinxin Yu, Jianjun Zhou, and Yuechan Kong. 2022. "Thermal Performance Improvement of AlGaN/GaN HEMTs Using Nanocrystalline Diamond Capping Layers" Micromachines 13, no. 9: 1486. https://doi.org/10.3390/mi13091486
APA StyleGuo, H., Li, Y., Yu, X., Zhou, J., & Kong, Y. (2022). Thermal Performance Improvement of AlGaN/GaN HEMTs Using Nanocrystalline Diamond Capping Layers. Micromachines, 13(9), 1486. https://doi.org/10.3390/mi13091486