Biocontrol of Fruit Rot of Litchi chinensis Using Zinc Oxide Nanoparticles Synthesized in Azadirachta indica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Rotten Lychee Fruits
2.2. Isolation of Disease-Causing Pathogen
2.3. Morphological and Microscopic Identification of Pathogen
2.4. Molecular Identification of Fungal Species
2.5. Pathogenicity Test
2.6. Preparation of Leaf Extract of Azadirachta indica
2.7. Preparation of ZnO Nanoparticles
2.8. Characterization of Nanoparticles
2.8.1. UV-Visible Spectroscopy
2.8.2. Fourier Transformed Infrared (FTIR) Spectroscopy
2.8.3. XRD Analysis
2.8.4. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) Analysis
2.9. Mycelial Growth Inhibition Assay, In Vitro
2.10. Disease Control Assay, In Vivo
2.11. Statistical Analysis
3. Results
3.1. Morphological and Microscopic Identification of the Pathogen
3.2. Pathogenicity Test
3.3. Molecular Identification and Phylogenetic Analysis
3.4. UV-Visible Spectroscopy
3.5. FTIR Analysis
3.6. XRD Analysis
3.7. SEM and EDX Analysis
3.8. Antifungal Activity of ZnO NPs, In Vitro
3.9. Antifungal Activity of ZnO NPs, In Vivo
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nacif, S.R.; Paoli, A.A.S.; Salomão, L.C.C. Morphological and anatomical development of The Litchi fruit (Litchi chinensis Sonn. CV. Brewster). Fruits 2001, 56, 225–233. [Google Scholar] [CrossRef]
- Zheng, X.; Yu, Y.; Xiao, G.; Xu, Y.; Wu, J.; Tang, D.; Zhang, Y. Comparing product stability of probiotic beverages using Litchi juice treated by high hydrostatic pressure and heat as substrates. Innov. Food Sci. Emerg. Technol. 2014, 23, 61–67. [Google Scholar] [CrossRef]
- Kaushik, N.; Kaur, B.P.; Rao, P.S. Inactivation of polyphenol oxidase and peroxidase enzymes during pulsed, static and cyclic inactivation of Litchi Juice. Food Bioprod. Process. 2000, 100, 412–423. [Google Scholar] [CrossRef]
- Rajwana, I.A.; Malik, A.U.; Khan, A.S.; Anwar, R. Lychee Industry in Pakistan: Potential and Prospects. Acta Hortic. 2010, 863, 67–72. [Google Scholar] [CrossRef]
- Johnson, G.I.; Cooke, A.W.; Sardsud, U. Postharvest disease control in lychee. In Proceedings of the International Symposium on Tropical and Subtropical Fruits, Cairns, QLD, Australia, 26 November–1 December 2000; Volume 575, pp. 705–715. [Google Scholar]
- Sinha, S.N.; Ramakrishna, U.V.; Sinha, P.K.; Thakur, C.P. A recurring disease outbreak following Litchi fruit consumption among children in muzaffarpur, Bihar—A comprehensive investigation on factors of toxicity. PLoS ONE 2020, 15, e0244798. [Google Scholar] [CrossRef] [PubMed]
- Din, M.I.; Nabi, A.G.; Rani, A.; Aihetasham, A.; Mukhtar, M. Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: Catalytic and antimicrobial potentials. Environ. Nanotechnol. Monit. Managt. 2018, 9, 29–36. [Google Scholar] [CrossRef]
- Gur, T.; Meydan, I.; Seckin, H.; Bekmezci, M.; Sen, F. Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environ. Res. 2022, 204, 111897. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, V.; Subramaniam, S.; Krishnan, V. Green synthesis and characterization of zinc oxide nanoparticles using Berberis tinctoria Lesch. leaves and fruits extract of multi-biological applications. Nanomed Res Jl. 2021, 6, 128–147. [Google Scholar]
- Bhat, R.S.; Al-daihan, S. Antimicrobial activity of Litchi chinensis and Nephelium lappaceum aqueous seed extracts against some pathogenic bacterial strains. J. King Saud Univ. Sci. 2014, 26, 79–82. [Google Scholar] [CrossRef]
- Oves, M.; Mohd, A.R.; Mohammad, A.; Huda, A.Q.; Hana, S.; Irfan, A.; Gaffar, S.Z.; Mohd, S. Green synthesis of silver nanoparticles by Conocarpus lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J. Biol. Sci. 2022, 29, 460–471. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. Green synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology 2018, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Oyeleke, S.B.; Manga, S.B. Essentials of Laboratory Practicals in Microbiology; Tobest Publishers: Minna, Nigeria, 2008; pp. 36–75. [Google Scholar]
- Liaquat, F.; Arif, S.; Ashraf, M.; Chaudhary, H.J.; Munis, M.F.H.; Farooq, A.B.U. Aspergillus niger causes fruit rot of lemon and grapefruit in Pakistan. Plant Dis. 2016, 100, 1951. [Google Scholar] [CrossRef]
- El-Belely, E.F.; Farag, M.; Said, H.A.; Amin, A.S.; Azab, E.; Gobouri, A.A.; Fouda, A. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Arthrospira platensis (Class: Cyanophyceae) and evaluation of their biomedical activities. Nanomaterials 2021, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Gautam, A.K.; Sharma, S.; Avasthi, S.; Bhadauria, R. Diversity, pathogenicity and toxicology of A. niger: An important spoilage fungus. Res. J. Microbiol. 2011, 6, 270–280. [Google Scholar] [CrossRef]
- Javadpour, S.; Golestani, A.; Rastegar, S.; Dastjer, M.M. Postharvest control of Aspergillus niger in mangos by means of essential oil. Adv. Hortic. Sci. 2018, 32, 389–398. [Google Scholar]
- Jatoi, G.H.; Muhammad, S.; Metlo, W.A.; Al-Ani, L.K.T.; Haseenullah Abro, M.A.; Gadhi, M.A.; Awan, N.W.; Reki, M.A. Efficacy of different essential oils, fungicides and biocontrol agents against Aspergillus niger the causal agent of fruit rot in pomegranate. Int. J. Biosci. 2020, 16, 51–65. [Google Scholar]
- Kumar, D.; Shukla, H.; Sharma, N. Antibacterial and morphological studies of plant-mediated synthesized CuO nanoparticles using Azadirachta indica (neem) leaf extract. Int. J. Nano Dimens. 2022, 13, 197–204. [Google Scholar]
- Paraguay-Delgado, F.; Hermida-Montero, L.A.; Morales-Mendoza, J.E.; Durán-Barradas, Z.; Mtz-Enriquez, A.I.; Pariona, N. Photocatalytic properties of Cu-containing ZnO nanoparticles and their antifungal activity against agriculture-pathogenic fungus. RSC Adv. 2022, 12, 9898–9908. [Google Scholar] [CrossRef]
- Perelshtein, I.; Lipovsky, A.; Perkas, N.; Gedanken, A.; Moschini, E.; Mantecca, P. The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Res. 2015, 8, 695–707. [Google Scholar] [CrossRef]
- Miri, A.; Mahdinejad, N.; Ebrahimy, O.; Khatami, M.; Sarani, M. Zinc oxide nanoparticles: Biosynthesis, characterization, antifungal and cytotoxic activity. Mater. Sci. Eng. 2019, 104, 109981. [Google Scholar] [CrossRef]
- Gupta, B.P.; Mathur, A.; Koul, A.; Shrivastava, V. Study on the extraction and purification of metabolites obtained from Trichoderma harzianum. Asian J. Pharm. Pharmacol. 2019, 5, 547–550. [Google Scholar] [CrossRef]
- Jaffri, S.B.; Ahmad, K.S. Augmented photocatalytic, antibacterial and antifungal activity of prunosynthetic silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018, 46, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Asmat-Campos, D.; Delfín-Narciso, D.; Juárez-Cortijo, L. Textiles functionalized with ZnO nanoparticles obtained by chemical and green synthesis protocols: Evaluation of the type of textile and resistance to UV radiation. Fibers 2021, 9, 10. [Google Scholar] [CrossRef]
- Shedrack, R.K.; Peter, K.; Judith, S.; Dominic, O.; Peter, M.; Naomi, M. Biogenic synthesis of silver nanoparticles using Azadirachta indica methanolic bark extract and their anti-proliferative activities against DU-145 human prostate cancer cells. Afr. J. Biotechnol. 2022, 21, 64–72. [Google Scholar]
S. No. | Functional Groups | Compound | Wave Number | Type of Vibration | Bonding | Peaks |
---|---|---|---|---|---|---|
1 | OH | Alcohol | 3361.68 | Stretching | Strong | Broad |
2 | O-H | Carboxylic Acid | 3218.19 | Stretching | Strong | Broad |
3 | -C=C | Conjugated Alkene | 1637.89 | Stretching | Medium | Broad |
4 | N-H | 1° Amine | 1608.25 | Bending | Medium | Broad |
5 | S=O | Sulfate | 1409.96 | Stretching | Strong | Broad |
6 | C-Br | Alkyl Halides | 573.98 | Stretching | Strong | Broad |
S. No. | Functional Groups | Compound | Wave Number | Type of Vibration | Bonding | Peaks |
---|---|---|---|---|---|---|
1 | O-H | Alcoholq | 3304.21 | Stretching | Strong | Broad |
2 | -C=C | Alkene | 1639.16 | Stretching | Medium | Broad |
3 | N-H | Anhydride | 1044.48 | Bending | Medium | Broad |
Concentration (mg/mL) | Percentage Inhibition (%) |
---|---|
1.0 | 70.51 ± 3.41 |
0.75 | 60.11 ± 3.31 |
0.50 | 43.18 ± 3.73 |
0.25 | 29.45 ± 2.11 |
0.1 | 21.92 ± 1.98 |
Control | 0.00 |
Treatment | Diseased Area (mm) |
---|---|
1.0 | 25.4 ± 2.4 |
0.75 | 33.2 ± 3.2 |
0.50 | 40.6 ± 5.0 |
0.25 | 50.7 ± 4.8 |
0.1 | 89.6 ± 2.8 |
Control | 92.0 ± 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, J.; Ali, M.; Sheikh, H.M.; Al-Kattan, M.O.; Farhana; Haroon, U.; Safaeishakib, M.; Akbar, M.; Kamal, A.; Zubair, M.S.; et al. Biocontrol of Fruit Rot of Litchi chinensis Using Zinc Oxide Nanoparticles Synthesized in Azadirachta indica. Micromachines 2022, 13, 1461. https://doi.org/10.3390/mi13091461
Ahmed J, Ali M, Sheikh HM, Al-Kattan MO, Farhana, Haroon U, Safaeishakib M, Akbar M, Kamal A, Zubair MS, et al. Biocontrol of Fruit Rot of Litchi chinensis Using Zinc Oxide Nanoparticles Synthesized in Azadirachta indica. Micromachines. 2022; 13(9):1461. https://doi.org/10.3390/mi13091461
Chicago/Turabian StyleAhmed, Junaid, Musrat Ali, Huda M. Sheikh, Manal O. Al-Kattan, Farhana, Urooj Haroon, Masoumeh Safaeishakib, Mahnoor Akbar, Asif Kamal, Mohammad Sameer Zubair, and et al. 2022. "Biocontrol of Fruit Rot of Litchi chinensis Using Zinc Oxide Nanoparticles Synthesized in Azadirachta indica" Micromachines 13, no. 9: 1461. https://doi.org/10.3390/mi13091461
APA StyleAhmed, J., Ali, M., Sheikh, H. M., Al-Kattan, M. O., Farhana, Haroon, U., Safaeishakib, M., Akbar, M., Kamal, A., Zubair, M. S., & Munis, M. F. H. (2022). Biocontrol of Fruit Rot of Litchi chinensis Using Zinc Oxide Nanoparticles Synthesized in Azadirachta indica. Micromachines, 13(9), 1461. https://doi.org/10.3390/mi13091461