Editorial for the Special Issue on Advanced Machine Learning Techniques for Sensing and Imaging Applications
Conflicts of Interest
References
- Zhang, M.; Wang, H.; Zhang, Z.; Chen, Z.; Shen, J. Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution. Micromachines 2021, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; She, K.; Liu, J. Wavelet Frequency Separation Attention Network for Chest X-ray Image Super-Resolution. Micromachines 2021, 12, 1418. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Liu, S.; Zhou, J.; Zhang, Y.; Feng, Z. Extreme low-resolution activity recognition using a super-resolution-oriented generative adversarial network. Micromachines 2021, 12, 670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tong, Y.; Jiao, L. Simultaneous Patch-Group Sparse Coding with Dual-Weighted ℓp Minimization for Image Restoration. Micromachines 2021, 12, 1205. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.D.; Cai, R.; Zhao, H.; Kot, A.C.; Wen, B. Towards More Efficient Security Inspection via Deep Learning: A Task-Driven X-ray Image Cropping Scheme. Micromachines 2022, 13, 565. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Wang, H.; Shen, J.; Chen, Z.; Zhang, Z.; Ge, X. Synergy factorized bilinear network with a dual suppression strategy for brain tumor classification in MRI. Micromachines 2021, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Zhou, Y.; Li, F.; Zhou, T.; Meng, X.; Wang, F.; Zhang, Z.; Pu, J.; Xu, B. Three-Dimensional Semantic Segmentation of Pituitary Adenomas Based on the Deep Learning Framework-nnU-Net: A Clinical Perspective. Micromachines 2021, 12, 1473. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhang, Y.; Zhang, Y.; Chen, Z.; Li, C.; Zhou, H. A 3D-2D Multibranch Feature Fusion and Dense Attention Network for Hyperspectral Image Classification. Micromachines 2021, 12, 1271. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qiu, Z.; Cao, X.; Chen, Z.; Gao, H.; Hua, Z. Hybrid dilated convolution with multi-scale residual fusion network for hyperspectral image classification. Micromachines 2021, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhang, Y.; Nguyen, K.T.; Feng, S.; Shi, Y.; Liu, Y.; Hutchinson, P.; Chierchia, G.; Talbot, H.; Bourouina, T.; et al. Machine learning-based pipeline for high accuracy bioparticle sizing. Micromachines 2020, 11, 1084. [Google Scholar] [CrossRef] [PubMed]
- Fayyaz, M.A.B.; Johnson, C. Object detection at level crossing using deep learning. Micromachines 2020, 11, 1055. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, B.; Wang, Z. Editorial for the Special Issue on Advanced Machine Learning Techniques for Sensing and Imaging Applications. Micromachines 2022, 13, 1030. https://doi.org/10.3390/mi13071030
Wen B, Wang Z. Editorial for the Special Issue on Advanced Machine Learning Techniques for Sensing and Imaging Applications. Micromachines. 2022; 13(7):1030. https://doi.org/10.3390/mi13071030
Chicago/Turabian StyleWen, Bihan, and Zhangyang Wang. 2022. "Editorial for the Special Issue on Advanced Machine Learning Techniques for Sensing and Imaging Applications" Micromachines 13, no. 7: 1030. https://doi.org/10.3390/mi13071030
APA StyleWen, B., & Wang, Z. (2022). Editorial for the Special Issue on Advanced Machine Learning Techniques for Sensing and Imaging Applications. Micromachines, 13(7), 1030. https://doi.org/10.3390/mi13071030