Hybrid Nanowire–Rectangular Plasmonic Waveguide for Subwavelength Confinement at 1550 Nm
Abstract
:1. Introduction
2. Structure Design
3. Methods
4. Results and Discussion
5. Fabrication Processing and Fabrication Error Tolerance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, P.; Almeida, G.; Mendona, C.R. A simple strategy for increasing optical waveguide performance using spherical aberration. Opt. Laser Technol. 2021, 142, 107235. [Google Scholar] [CrossRef]
- Chandra, V.; Ranjan, R. Performance analysis of different slot waveguide structures for evanescent field based gas sensor applications. Opt. Quantum Electron. 2021, 53, 1–5. [Google Scholar] [CrossRef]
- Arianfard, H.; Wu, J.; Juodkazis, S.; Moss, D.J. High Performance Optical Filters Using Three Waveguide Coupled Sagnac Loop Reflectors. arXiv 2021, arXiv:2103.07822. [Google Scholar]
- Oulton, R.F.; Sorger, V.J.; Genov, D.A.; Pile, D.F.P.; Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2008, 2, 496–500. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.; He, S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express 2009, 17, 16646–16653. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.J. Automated inspection systems for the electronics industry: As IC devices get smaller and smaller, the challenge of detecting faults becomes bigger and bigger. EE-Eval. Eng. 2005, 44, 56–59. [Google Scholar]
- Hu, Y.-J.; Xu, L.; Zhang, Q.; Yuan, C.-W.; Liu, J.-L.; Sun, Y.-F. A compact high-power microwave TM01-TE01 mode converter. Rev. Sci. Inst. 2021, 92, 094703. [Google Scholar] [CrossRef] [PubMed]
- Rui, X.; Jian, S. The Graphene Square Waveguide with Small Normalized Mode Area. IEEE Photonics Technol. Lett. 2017, 29, 1643–1646. [Google Scholar]
- Singh, R.; Priye, V. Si3N4—SiO2 Based Curve Slot Waveguide for High Confinement Factor and Low Mode Effective Area along with Biosensing Application. Silicon 2021, 14, 859–867. [Google Scholar] [CrossRef]
- He, X.; Liu, F.; Lin, F.; Shi, W. Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides. Opt. Lett. 2021, 46, 472–475. [Google Scholar] [CrossRef]
- Teng, D.; Wang, K.; Huan, Q.; Chen, W.; Li, Z. High-performance light transmission based on graphene plasmonic waveguides. J. Mater. Chem. C 2020, 8, 6832–6838. [Google Scholar] [CrossRef]
- Teng, D.; Wang, K. Theoretical Analysis of Terahertz Dielectric–Loaded Graphene Waveguide. Nanomaterials 2021, 11, 210. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, M.; Depine, R.A. Excitation of surface plasmon polaritons along the sinusoidal boundary of a metamaterial. Phys. Rev. B Condens. Matter 2008, 78, 125412. [Google Scholar] [CrossRef] [Green Version]
- Tgab, C.; Erb, D. Propagation of surface plasmon polaritons at the interface of metal-free metamaterial with anisotropic semiconductor inclusions. Optik 2022, 254, 168678. [Google Scholar]
- Wang, Y.; Liu, H.; Wang, S.; Cai, M.; Ma, L. Optical Transport Properties of Graphene Surface Plasmon Polaritons in Mid-Infrared Band. Crystals 2019, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Teng, D.; Wang, Z.; Huan, Q.; Wang, H.; Wang, K. A low loss platform for subwavelength terahertz graphene plasmon propagation. Opt. Mater. 2022, 128, 112436. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Cai, M.; Liu, H. A Long Propagation Distance Hybrid Triangular Prism Waveguide for Ultradeep Subwavelength Confinement. IEEE Sens. J. 2019, 19, 11159–11166. [Google Scholar] [CrossRef]
- Lu, D.; Liu, H.; Wang, S.; Sheng, Q.; Lei, W. Hybrid Tube-Triangle Plasmonic Waveguide for Ultradeep Subwavelength Confinement. J. Lightwave Technol. 2017, 35, 2259–2265. [Google Scholar]
- Bian, Y.; Ren, Q.; Kang, L.; Yue, T.; Werner, P.L.; Werner, D.H. Deep-subwavelength light transmission in hybrid nanowire-loaded silicon nano-rib waveguides. Photonics Res. 2018, 6, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Gou, X.; Xu, W.; Li, Y.; Zhai, X.; Li, H.; Wang, L. Dynamically Tunable Plasmon-induced Transparency in a T-shaped Cavity Waveguide Based on Bulk Dirac Semimetals. Plasmonics 2021, 16, 323–332. [Google Scholar] [CrossRef]
- Qiao, Q.; Xu, Y.; Zhang, L.; Li, W.; Shi, Z. Spoof surface plasmon polariton waveguide with spiral structure units. Eur. Phys. J. Plus 2021, 136, 874. [Google Scholar] [CrossRef]
- Teng, D.; Wang, K.; Li, Z. Graphene-Coated Nanowire Waveguides and Their Applications. Nanomaterials 2020, 10, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J. Terahertz graphene modulator based on hybrid plasmonic waveguide. Phys. Scr. 2021, 96, 125525. [Google Scholar] [CrossRef]
- Ma, Y.; Farrell, G.; Semenova, Y.; Wu, Q. Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement. Opt. Lett. 2014, 39, 973–976. [Google Scholar] [CrossRef]
- Dan, X.; Huang, Y.; Wang, X.; Hao, H.; He, H. Hybrid Surface Plasmon Polariton Waveguide of Low-Loss and Ultra-Small Modal Area. Acta Opt. Sin. 2015, 35, 0623003. [Google Scholar] [CrossRef]
- Ma, Z.A.; Zhang, P.B.; Li, L.; Ni, X.A. Endless single-polarization single-mode photonic-crystal planar waveguide arrays with ultra-large mode area and ultra-low transmission loss—ScienceDirect. Optik 2021, 238, 166474. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, P.; Ranjan, R. A Metal-Cap Wedge Shape Hybrid Plasmonic Waveguide for Nano-Scale Light Confinement and Long Propagation Range. Plasmonics 2021, 17, 95–105. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Wang, S.; Cai, M. A waveguide-integrated graphene-based subwavelength electro-optic switch at 1550 nm. Opt. Commun. 2021, 495, 127121. [Google Scholar] [CrossRef]
- Tilmans, H.; Baert, K.; Verbist, A.; Puers, R. CMOS foundry-based micromachining. J. Micromech. Microeng. 1996, 6, 122. [Google Scholar] [CrossRef]
- Mohammad, T.; He, S.; Mrad, R.B. Conventional surface micromachining process for the fabrication of a linear optical phased array based on piston micromirrors. J. Micromech. Microeng. 2021, 31, 065009. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, H.; Wang, S.; Cai, M. Hybrid Nanowire–Rectangular Plasmonic Waveguide for Subwavelength Confinement at 1550 Nm. Micromachines 2022, 13, 1009. https://doi.org/10.3390/mi13071009
Wang Y, Liu H, Wang S, Cai M. Hybrid Nanowire–Rectangular Plasmonic Waveguide for Subwavelength Confinement at 1550 Nm. Micromachines. 2022; 13(7):1009. https://doi.org/10.3390/mi13071009
Chicago/Turabian StyleWang, Yindi, Hongxia Liu, Shulong Wang, and Ming Cai. 2022. "Hybrid Nanowire–Rectangular Plasmonic Waveguide for Subwavelength Confinement at 1550 Nm" Micromachines 13, no. 7: 1009. https://doi.org/10.3390/mi13071009
APA StyleWang, Y., Liu, H., Wang, S., & Cai, M. (2022). Hybrid Nanowire–Rectangular Plasmonic Waveguide for Subwavelength Confinement at 1550 Nm. Micromachines, 13(7), 1009. https://doi.org/10.3390/mi13071009