Dispersion Engineering of Silicon Nitride Microresonators via Reconstructable SU-8 Polymer Cladding
Abstract
1. Introduction
2. Dispersion Simulation
3. Device Fabrication and Experimental Setup
4. Dispersion Measurements
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, A.C.; Manolatou, C.; Schmidt, B.S.; Lipson, M.; Foster, M.A.; Sharping, J.E.; Gaeta, A.L. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express 2006, 14, 4357–4362. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.T.; Agarwal, A.M.; Kimerling, L.C. Nonlinear photonic waveguides for on-chip optical pulse compression. Laser Photonics Rev. 2015, 9, 294–308. [Google Scholar] [CrossRef]
- Eldada, L. Optical communication components. Rev. Sci. Instrum. 2004, 75, 575–593. [Google Scholar] [CrossRef]
- Guo, Y.; Jafari, Z.; Xu, L.; Bao, C.; Liao, P.; Li, G.; Agarwal, A.M.; Kimerling, L.C.; Michel, J.; Willner, A.E. Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics. Photonics Res. 2019, 7, 1279–1286. [Google Scholar] [CrossRef]
- Tai, K.; Hasegawa, A.; Tomita, A. Observation of modulational instability in optical fibers. Phys. Rev. Lett. 1986, 56, 135. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.T.H.; Ikeda, K.; Sun, P.C.; Fainman, Y. Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl. Phys. Lett. 2010, 96, 061101. [Google Scholar] [CrossRef]
- Boggio, J.C.; Bodenmüller, D.; Fremberg, T.; Haynes, R.; Roth, M.; Eisermann, R.; Lisker, M.; Zimmermann, L.; Böhm, M. Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization. JOSA B 2014, 31, 2846–2857. [Google Scholar] [CrossRef]
- Riemensberger, J.; Hartinger, K.; Herr, T.; Brasch, V.; Holzwarth, R.; Kippenberg, T.J. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt. Express 2012, 20, 27661–27669. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, Y.; Li, J.; Huo, Y.; Chen, M.; Yang, S.; Chen, H. Spatial-mode-coupling-based dispersion engineering for integrated optical waveguide. Opt. Express 2018, 26, 2807–2816. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Han, K.; Wang, C.; Jaramillo-Villegas, J.A.; Xue, X.; Bao, C.; Xuan, Y.; Leaird, D.E.; Weiner, A.M.; Qi, M. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, M.; Yu, M.; Zhu, R.; Hu, H.; Loncar, M. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 2019, 10, 978. [Google Scholar] [CrossRef]
- Moille, G.; Westly, D.; Orji, N.G.; Srinivasan, K. Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion. Appl. Phys. Lett. 2021, 119, 121103. [Google Scholar] [CrossRef]
- Sahin, E.; Ooi, K.; Png, C.; Tan, D. Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip. Appl. Phys. Lett. 2017, 110, 161113. [Google Scholar] [CrossRef]
- Mata, A.; Fleischman, A.J.; Roy, S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 2006, 16, 276–284. [Google Scholar] [CrossRef]
- Abgrall, P.; Conedera, V.; Camon, H.; Gue, A.M.; Nguyen, N.T. SU-8 as a structural material for labs-on-chips and microelectromechanical systems. Electrophoresis 2007, 28, 4539–4551. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Ke, M.; Wang, Y.; Lancaster, M.J. WR-3 Band Waveguides and Filters Fabricated Using SU8 Photoresist Micromachining Technology. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 629–637. [Google Scholar] [CrossRef]
- Pinto, V.C.; Sousa, P.J.; Cardoso, V.F.; Minas, G. Optimized SU-8 processing for low-cost microstructures fabrication without cleanroom facilities. Micromachines 2014, 5, 738–755. [Google Scholar] [CrossRef]
- Ariannejad, M.M.; Amiri, I.S.; Ahmad, H.; Yupapin, P. A large free spectral range of 74.92 GHz in comb peaks generated by SU-8 polymer micro-ring resonators: Simulation and experiment. Laser Phys. 2018, 28, 115002. [Google Scholar] [CrossRef]
- Dai, D.; Yang, B.; Yang, L.; Sheng, Z.; He, S. Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides. IEEE Photonics Technol. Lett. 2009, 21, 254–256. [Google Scholar]
- RSoft FemSIM; RSoft Products; Synopsys, Inc.: Mountain View, CA, USA, 2007.
- Xue, X.; Wang, P.H.; Xuan, Y.; Qi, M.; Weiner, A.M. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photonics Rev. 2017, 11, 1600276. [Google Scholar] [CrossRef]
- Schwelb, O. Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview. J. Lightwave Technol. 2004, 22, 1380. [Google Scholar] [CrossRef]
- Twayana, K.; Ye, Z.; Helgason, O.B.; Vijayan, K.; Karlsson, M.; Torres-Company, V. Frequency-comb-calibrated swept-wavelength interferometry. Opt. Express 2021, 29, 24363–24372. [Google Scholar] [CrossRef]
- Jin, W.; Yang, Q.-F.; Chang, L.; Shen, B.; Wang, H.; Leal, M.A.; Wu, L.; Gao, M.; Feshali, A.; Paniccia, M. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics 2021, 15, 346–353. [Google Scholar] [CrossRef]
- Fujii, S.; Tanabe, T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics 2020, 9, 1087–1104. [Google Scholar] [CrossRef]
- Hong, Y.; Hong, Y.; Hong, J.; Lu, G.-W. Dispersion Optimization of Silicon Nitride Waveguides for Efficient Four-Wave Mixing. Photonics 2021, 8, 161. [Google Scholar] [CrossRef]
- Homoelle, D.; Wielandy, S.; Gaeta, A.L.; Borrelli, N.; Smith, C. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. Opt. Lett. 1999, 24, 1311–1313. [Google Scholar] [CrossRef]
- Nordström, M.; Zauner, D.A.; Boisen, A.; Hübner, J. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications. J. Lightwave Technol. 2007, 25, 1284–1289. [Google Scholar] [CrossRef]
- Lee, D.E.; Lee, Y.J.; Shin, E.; Kwon, S.-H. Mach-Zehnder interferometer refractive index sensor based on a plasmonic channel waveguide. Sensors 2017, 17, 2584. [Google Scholar] [CrossRef]
- Nitiss, E.; Zabelich, B.; Yakar, O.; Liu, J.; Wang, R.N.; Kippenberg, T.J.; Brès, C.-S. Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides. Photonics Res. 2020, 8, 1475–1483. [Google Scholar] [CrossRef]
- Driscoll, J.B.; Ophir, N.; Grote, R.R.; Dadap, J.I.; Panoiu, N.C.; Bergman, K.; Osgood, R.M. Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: Experimental and theoretical demonstration. Opt. Express 2012, 20, 9227–9242. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-P.; Lee, T.-H.; Chen, Y.-Y.; Wang, P.-H. Dispersion Engineering of Silicon Nitride Microresonators via Reconstructable SU-8 Polymer Cladding. Micromachines 2022, 13, 454. https://doi.org/10.3390/mi13030454
Wang S-P, Lee T-H, Chen Y-Y, Wang P-H. Dispersion Engineering of Silicon Nitride Microresonators via Reconstructable SU-8 Polymer Cladding. Micromachines. 2022; 13(3):454. https://doi.org/10.3390/mi13030454
Chicago/Turabian StyleWang, Shang-Pu, Tien-Hsiang Lee, You-Yuan Chen, and Pei-Hsun Wang. 2022. "Dispersion Engineering of Silicon Nitride Microresonators via Reconstructable SU-8 Polymer Cladding" Micromachines 13, no. 3: 454. https://doi.org/10.3390/mi13030454
APA StyleWang, S.-P., Lee, T.-H., Chen, Y.-Y., & Wang, P.-H. (2022). Dispersion Engineering of Silicon Nitride Microresonators via Reconstructable SU-8 Polymer Cladding. Micromachines, 13(3), 454. https://doi.org/10.3390/mi13030454