Bidirectional Coupler Study for Chip-Based Spectral-Domain Optical Coherence Tomography
Abstract
:1. Introduction
2. Theory and Design
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brezinski, M.E. Optical coherence tomography theory. In Optical Coherence Tomography; Academic Press: Cambridge, MA, USA, 2006; pp. 97–145. [Google Scholar]
- Drexler, W.E.; Fujimoto, J.G. Optical Coherence Tomography: Technology and Applications; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Grulkowski, I.; Manzanera, S.; Cwiklinski, L.; Sobczuk, F.; Karnowski, K.; Artal, P. Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye. Optica 2018, 5, 52–59. [Google Scholar] [CrossRef]
- Eom, J.B.; Eom, J.; Park, A.; Ahn, J.C. Optical coherence tomography-based 3D intraoral scanner. In Proceedings of the European Conference on Biomedical Optics 2019, Munich, Germany, 23–25 June 2019. [Google Scholar]
- Liu, S.; Wang, H.; Zhou, C.; Huang, Z.; Zhang, J. Analysis of ciliary beat frequency in the mouse oviduct using optical coherence tomography. In Proceedings of the 2019 International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 20–22 December 2019; pp. 162–166. [Google Scholar] [CrossRef]
- Yurtsever, G.; Považay, B.; Alex, A.; Zabihian, B.; Drexler, W.; Baets, R. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography. Opt. Express 2014, 5, 1050–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widhianto, B.Y.B.; Lu, Y.T.; Chang, W.C.; Hsu, S.H. Broadband coupler manipulation through particle swarm optimization for arrayed waveguide grating based optical coherence tomography. IEEE Photonics J. 2021, 13, 6600613. [Google Scholar] [CrossRef]
- Morino, H.; Maruyama, T.; Iiyama, K. Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler. J. Lightwave Technol. 2014, 12, 2188–2192. [Google Scholar] [CrossRef]
- Xu, H.; Shi, Y. Flat-top CWDM (de)multiplexer based on MZI with bent directional couplers. IEEE Photonics Technol. Lett. 2018, 30, 169–172. [Google Scholar] [CrossRef]
- Maese-Novo, A.; Halir, R.; Romero-García, S.; Pérez-Galacho, D.; Zavargo-Peche, L.A.; Ortega-Moñux, A.; Molina-Fernández, I.; Wangüemert-Pérez, J.; Cheben, P. Wavelength independent multimode interference coupler. Opt. Express 2013, 21, 7033–7040. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Yun, H.; Wang, Y.; Chen, Z.; Zhang, F.; Jaeger, N.A.F.; Chrostowski, L. Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control. Opt. Express 2014, 23, 3795–3806. [Google Scholar] [CrossRef] [PubMed]
- Akca, B.I.; Považay, B.; Alex, A.; Wörhoff, K.; Ridder, R.M.D.; Drexler, W.; Pollnau, M. Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip. Opt. Express 2013, 21, 16648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Shi, Y.; He, S.; Dai, D. Low-loss and broadband 2 × 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers. Opt. Lett. 2016, 41, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.-H.; Tu, Y.-C.; Huang, D.-W. Broadband optical waveguide couplers with arbitrary coupling ratios designed using a genetic algorithm. Opt. Express 2012, 24, 30547–30561. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ribero, A.; Xing, Y.; Bogaerts, W. Tolerant, broadband tunable 2 x 2 coupler circuit. Opt. Express 2020, 28, 5555–5566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Dai, D.; Shi, Y. Low-crosstalk and fabrication-tolerant four-channel CWDM filter based on dispersion-engineered Mach-Zehnder interferometers. Opt. Express 2021, 13, 20617–20631. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Cong, G.; Tanizawa, K.; Kim, S.H.; Ikeda, K.; Namiki, S.; Kawashima, H. Ultra-high-extinction-ratio 2 x 2 silicon optical switch with variable splitter. Opt. Express 2015, 7, 9086–9092. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.H. Signal power tapped with low polarization dependence and insensitive wavelength on SOI platforms. J. Opt. Soc. Am. B 2010, 27, 941–947. [Google Scholar] [CrossRef]
- Lu, Y.T.; Widhianto, B.Y.B.; Hsu, S.H.; Chang, C.C. Tandem Mach Zehnder directional coupler design and simulation on silicon platform for optical coherence tomography applications. Sensors 2020, 20, 1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, H. Crosstalk reduction in a 10-GHz spacing arrayed-waveguide grating by phase-error compensation. J. Lightwave Technol. 1998, 16, 364. [Google Scholar] [CrossRef]
- Takada, K.; Inoue, Y.; Yamada, H.; Horiguchi, M. Measurement of phase error distributions in silica-based arrayed-waveguide grating multiplexers by using Fourier transform spectroscopy. Electron. Lett. 1994, 30, 1671–1672. [Google Scholar] [CrossRef]
- Madsen, C.K.; Zhao, J.H. Fundamentals of electromagnetic waves and waveguides. In Optical Filter Design and Analysis: A Signal Processing Approach; Wiley: New York, NY, USA, 1999; pp. 70–71. [Google Scholar]
- Pathak, S.; Dumon, P.; Thourhout, D.V.; Bogaerts, W. Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator. IEEE Photonics J. 2014, 6, 1–9. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wang, Y.; Tsang, H.K. Ultracompact 40-channel arrayed waveguide grating on silicon nitride platform at 860 nm. IEEE J. Quantum Electron. 2020, 56, 1–8. [Google Scholar] [CrossRef]
- Lycett, R.J.; Gallagher, D.F.G.; Brulis, V.J. Perfect chirped echelle grating wavelength multiplexor: Design and optimization. IEEE Photonics J. 2013, 5, 2400123. [Google Scholar] [CrossRef]
Splitting Ratio | 50:50 |
---|---|
54.77 μm | |
ΔL | 0.17 μm |
MPE (Mean Percentage Error) | 2.99% |
Parameters | AWG | EG |
---|---|---|
Channel Spacing | 1.58 nm | 1.85 nm |
Input Waveguide Spacing | 1.9 mm | 5 mm |
Rowland Circle | 528 mm | 1300 mm |
FSR (Free Spectral Range) | 120 nm | 120 nm |
m (Grating Order) | 6 | 8 |
(Input Angle) | 0° | 110° |
n (Effective Index of Planar Waveguides) | 2.988 | 2.988 |
nc (Effective Index of Channel Waveguides) | 2.516 | 2.516 |
DL (Optical Length Difference) | 3.124 mm | NA |
dAWG | 1.51 mm | NA |
dEG | NA | 5 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.-Y.; Chen, B.-L.; Lu, H.-Y.; Hsu, S.-H.; Takabayashi, M. Bidirectional Coupler Study for Chip-Based Spectral-Domain Optical Coherence Tomography. Micromachines 2022, 13, 373. https://doi.org/10.3390/mi13030373
Zheng H-Y, Chen B-L, Lu H-Y, Hsu S-H, Takabayashi M. Bidirectional Coupler Study for Chip-Based Spectral-Domain Optical Coherence Tomography. Micromachines. 2022; 13(3):373. https://doi.org/10.3390/mi13030373
Chicago/Turabian StyleZheng, Hong-Yan, Bo-Liang Chen, Hsiao-Yen Lu, Shih-Hsiang Hsu, and Masanori Takabayashi. 2022. "Bidirectional Coupler Study for Chip-Based Spectral-Domain Optical Coherence Tomography" Micromachines 13, no. 3: 373. https://doi.org/10.3390/mi13030373
APA StyleZheng, H.-Y., Chen, B.-L., Lu, H.-Y., Hsu, S.-H., & Takabayashi, M. (2022). Bidirectional Coupler Study for Chip-Based Spectral-Domain Optical Coherence Tomography. Micromachines, 13(3), 373. https://doi.org/10.3390/mi13030373