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Abstract: A chip-based spectral-domain optical coherence tomography (SD-OCT) system consists
of a broadband source, interferometer, and spectrometer. The optical power divider flatness in the
interferometer’s wavelength is crucial to higher signal-to-noise ratios. A Mach–Zehnder directional
coupler (MZDC) structure could be utilized to smoothly maximize the splitting ratio of 50:50 on
a silicon platform, with a sub-micrometer of decoupler optical path difference insensitive to the
process variation up to 20 nanometers. However, the optical signal reflected from the reference
and sample will go back to the same interferometer MZDC. The so-called bidirectional coupler
MZDC will not illustrate a flat optical power response in the operating wavelength range but
could still demonstrate at least 20 dB signal-to-noise ratio improvement in OCT after the echelle
grating spectrum compensation is applied. For maintaining the axial resolution and sensitivity, the
echelle grating is also insensitive to process shifts such as MZDC and could be further utilized to
compensate a 3 dB bidirectional MZDC structure for a broad and flat 100 nm wavelength response in
the interferometer-based on-chip SD-OCT.

Keywords: waveguide; optical coherence tomography; coupler

1. Introduction

Optical coherence tomography (OCT) is an imaging technique with a resolution in
the µm range and depth in the millimeter range. Spectral domain-OCT (SD-OCT) is based
on the principle of low coherence interferometry, while swept source-OCT (SS-OCT) uses
a wavelength-swept laser. Both OCT technologies need further intensive steps in signal
processing. The image resolution is one of the most critical parameters governing OCT
image quality. In contrast to standard microscopy, OCT can achieve better axial resolution
independent of the beam focusing and spot size. The bandwidth of the light source
determines the image resolution [1–5].

In recent years, silicon-on-insulator (SOI) substrates have been utilized for biosensor
research. Due to silicon wires’ high refractive index contrast, its photonic device footprint
can be significantly reduced. Moreover, the silicon photonic process is compatible with a
complementary metal-oxide-semiconductor fabrication, which will benefit the development
of high-density optoelectronic integrated circuits.

SOI has been developed as a common substrate for optical and electronic applications,
a critical platform for optoelectronic circuits. This platform can transform a bulky OCT
system into a compact silicon-photonics chip [6]. We reported the influence of optical
power splitting on the sensitivity and axial resolution in SD-OCT on silicon chip using
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a tandem Mach–Zehnder directional coupler-based broadband coupler through particle
swarm optimization (PSO) [7]. However, the PSO optimization is sensitive to the process
variation. Here, the process insensitivity approach will be proposed to maintain the
sensitivity of SD-OCT on-chip.

A chip-scale SD-OCT system consists of a broad bandwidth light source, interferometer,
and spectrometer. In the beginning, the broadband source light is sent to one of the
interferometer inputs. Then, its two outputs will be connected to the sample and reflector
sides and immediately followed by their reflections treated as the Michelson interferometer
inputs. The spectrometer is utilized to filter the recombined signal and inject it into the
line charged-coupled device (CCD) array for the interferometric signal analysis through
a data acquisition card (DAQ), as shown in Figure 1. In the setup, the collimator and
dispersion compensators are two devices utilized for parallel beam coupling and free
chromatic dispersion, respectively. They will not be integrated with the silicon chip. Finally,
the OCT scanning will go through the Glavanometer system for the structure profiles. In
this paper, the application of SD-OCT for the integration of optical components is explored
utilizing SOI technology.
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Figure 1. Optical coupler-based SD-OCT interferometer.

One of the crucial components in on-chip OCT is the optical power divider, an essential
function, as an interferometer to combine the reflection power from the reference and sam-
ple. The most common approach of producing optical power splitting is using a traditional
directional coupler (DC) because the proper coupling length adjustment can achieve any
arbitrary ratio. This simple design is sensitive to the operating wavelength. According to
the coupled-mode theory, the coupling coefficient and propagation constant contribution
to the coupling power’s amplitude and phase terms, implying that the coupling ratio per-
formance would vary with the wavelength variation. In the Fourier-domain OCT system,
broadband and wavelength-insensitive couplers were proposed and maintained the axial
resolution with high signal-to-noise ratios.

In the OCT system, we need a wavelength-insensitive coupler since the Fourier-
domain OCT high-axial resolution depends on the overall wavelength response of guided
wavelengths. There were several approaches to demonstrate the broadband wavelength
response through the optical coupler, such as curved/bent directional coupler [8,9], multi-
mode interference [10], asymmetry [11], adiabatic control [12], bending [13], and genetic
process [14]. Compensation manipulation’s decoupled phases developed the process in-
sensitivity with the broadband couplers [15]. Moreover, the high extinction ratio and
fabrication tolerance were shown as the dispersion-engineered Mach–Zehnder interfer-
ometers [16] and the variable splitter compensation [17]. One of the solutions to obtain a
compact, lower insertion loss and flat wavelength-dependent coupler, through the propa-
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gation constant and coupling coefficient-related waveguide structures manipulated for the
broadband wavelength response, is using a Mach–Zehnder configuration over a directional
coupler [18].

Further study shows that the waveguide width and length variation significantly affect
the power splitting ratio and wavelength flatness. Moreover, the OCT coupler executes
the Michelson interferometer and demonstrates the bidirectional function, in which optical
power splitters are intentionally breaking wavelength flatness built from unidirectional
parameters. This paper proposes a Mach–Zehnder directional coupler (MZDC) configura-
tion [19] by connecting two DCs through a short delay length for broadband wavelength
response. The most common process variation, ±10 nm, will be applied to the MZDC for
the effects in OCT. Unfortunately, its bidirectional function in the wavelength is not flat and
can be compensated by another process-shift insensitive echelle grating for axial resolution
improvement.

2. Theory and Design

A cascade of two similar DCs in a Mach–Zehnder (MZ) configuration [18] was suc-
cessfully utilized to achieve wavelength-insensitive performance, shown in Figure 2. In
addition, its function can be illustrated in the following:

MZDC = DC1 ∗ Delay ∗ DC2 (1)
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Figure 2. The schematic drawing for the MZDC structure.

The matrices of DC1 and DC2 are represented as follows:

DCi =

[
cosφi −isinφi
−isinφi cosφi

]
, i = 1, 2 (2)

Delay can be in the following:

Delay =

[
1 0
0 e−2iθ

]
(3)

where φi and θ are for the coupling of DCi and decoupling phases, respectively.
The coupling length of the directional coupler, Lc, can be listed below:

Lc =
λ

2(ns − na)
(4)

where ns and na are the effective indices of the two symmetrical and anti-symmetrical
supermodes in the coupled straight regions.

θ =
β(λ)∆L

2
(5)

φi =
∫ Li

0

π

2Lc
dz (6)

where b is the propagation constant and l is the operating wavelength. ∆L and Li represent
the optical phase difference in the decoupling and coupling length, respectively.

The siliconwire mode profiles for ns and na are simulated under the conditions of
380 nm and 220 nm for width and height, respectively, in the 1310 nm wavelength, shown
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in Figure 3. We can see the effective index difference is 0.006101, and the coupling length
can be estimated as 107 µm.
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The delay length in the MZDC decoupled arms is optimized to obtain the flat wave-
length response while maintaining the dedicated splitting ratio. For the MZDC configura-
tion effects in OCT performance improvement, the coupler spectrum is multiplied with
Gaussian windows and a single frequency test signal to observe the point spread function
(PSF) response, a signal-reflection OCT response. Results indicate that a MZDC with a
broad bandwidth response increases the signal-to-noise ratio (SNR) in OCT.

In Figure 1, only one input of the broadband coupler MZDC directs the optical source
into two outputs for the sample and reference signals, so two reflections will form the SD-
OCT-based interference after the wavelength splitters. Therefore, the MZDC transmission
is unidirectional and the reflection is bidirectional.

The unidirectional MZDC is one input and two outputs. Its transmission matrix can
be described as follows:[

E1
E2

]
=

[
cos∅2 −isin∅2
−isin∅2 cos∅2

][
1 0
0 e−2iθ

][
cos∅1 −isin∅1
−isin∅1 cos∅1

][
1
0

]
(7)

where ∅i (i = 1, 2) and θ are the phases for two directional couplers and one decoupling,
respectively.

The unidirectional MZDC outputs, E1 and E2, are listed in the following:

|E1|2 = cos2θcos2(∅1 +∅2) + sin2θcos2(∅1 −∅2) (8)

|E2|2 = cos2θsin2(∅1 +∅2) + sin2θsin2(∅1 −∅2) (9)

Two reflective signals, E′1 and E′2, will go through the same MZDC from the opposite
side and the bidirectional MZDC outputs, E3 and E4, can be described as follows:[

E3
E4

]
=

[
cos∅1 −isin∅1
−isin∅1 cos∅1

][
1 0
0 e−2iθ

][
cos∅2 −isin∅2
−isin∅2 cos∅2

][
E′1
E′2

]
(10)

A power splitting ratio of εi can be assumed as sin2∅i, i being equal to 1 and 2. E3 and
E4 can be derived in the following:

|E3|2 = [(1− ε2) (1− ε1) + ε2ε1 − 2
√
(1− ε2)ε2(1− ε1)ε1 cos(2θ)

]
E′1

2

+
[
ε2(1− ε1) + (1− ε2)ε1 + 2

√
(1− ε2)ε2(1− ε1)ε1 cos(2θ)

]
E′2

2

−2
√
(1− ε1)ε1 sin(2θ)E′1E′2

(11)
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|E4|2 = [(1− ε2) ε1 + ε2(1− ε1) + 2
√
(1− ε2)ε2(1− ε1)ε1 cos(2θ)

]
E′1

2

+
[
(1− ε2)(1− ε1) + ε2ε1 − 2

√
(1− ε2)ε2(1− ε1)ε1 cos(2θ)

]
E′2

2

+2
√
(1− ε1)ε1 sin(2θ)E′1E′2

(12)

When there are two inputs, the coefficients of the E′1
2 and E′2

2 are reciprocal from
Equations (11) and (12), which can be applied to the term of E′1E′2 only when the splitting
functions for two couplers are the same. The reciprocal process for the bidirectional
MZDC-based SD-OCT does not exist since the MZDC transmission is one input for the
optical source.

The spectrum from MZDC is demonstrated considering process variations in the
length within ±10 nm, as shown in Figure 2. In addition, the MZDC design parameters
are listed in Table 1. A mean percentage error (MPE) of the MZDC coupler performance is
calculated by averaging the percentage deviation from the actual optical power response
to desired response in each wavelength. The MZDC spectral response in uni- and bi-
directional functions is simulated under three process variations in the waveguide length
and shown in Figures 4 and 5, respectively. A cross state for MZDC is for the optical power
to be completely transferred from the input channel to the other channel at the output.
Moreover, the bar state of a MZDC uses the optical strength to completely pass through the
input channel at the output without any transfer to the other port.

Table 1. MZDC design parameters.

Splitting Ratio 50:50

L1 112.39 µm
L2 54.77 µm
∆L 0.17 µm

MPE (Mean Percentage Error) 2.99%
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Figure 5. The simulated spectrum response for the bidirectional MZDC (a) without the process length
shift; (b) 10 nm length shift; (c) −10 nm length variation.

The waveguide width-error tolerance is considerably ± 10 nm, which are 0.38 µm,
0.39 µm, and 0.37 µm. When the width is varied, the D0 [1], the phenomenological constant
with the µm as the unit, is the only parameter affected in MZDC, and they are 10.92, 11.06,
and 10.76 for the widths of 0.38 µm, 0.39 µm, and 0.37 µm, respectively. The spectral
response for the unidirectional MZDC is simulated for three process variations in the
waveguide width, as shown in Figure 6. In addition, the same simulation is also applied to
the bidirectional MZDC, and their spectral are demonstrated in Figure 7. In summary, the
length variation is more significant than the width in the MZDC spectrum.
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When the signal from the sample and reflector ports is reflected, the splitting ratio
performance could be formed an interrogated spectrum from Equation (12). The E4 field will
be connected to the spectrometer, for dealing with the optical power in every wavelength
for the SD-OCT data analysis.

The arrayed waveguide grating (AWG) and echelle grating (EG) are two main inte-
grated spectrometers on a chip. For a curved grating of radius R, the diffraction images of
a point source located on a circle of radius R/2, tangent to the grating at one point, will be
focused on the same circle. This circle is commonly referred to as the Rowland circle. The
grating equation for AWG is listed in the following:

ndAWG sin(θi) + ndAWG sin(θo) + nc∆L = mλ (13)

where n and nc are the effective index of the planar and channel waveguides, respectively.
∆L is the optical length difference between adjacent channels of the waveguide array. dAWG
is the grating period of AWG. θi and θo are the input and output angles of the diffraction
grating. m is the grating order, and λ is the operating wavelength.

The EG grating equation is AWG, except for the optical phase difference. In addition,
it can be represented as follows:

ndEG sin(θi) + ndEG sin(θo) = mλ (14)

where dEG is the grating period of EG.
Since the siliconwire experiences the process variation in the waveguide width and

length in a ±10 nm range, the waveguide array phase will not be constant and will
cause higher crosstalk [20,21]. The AWG transmission spectrum was utilized for crosstalk
simulation through the uniform distribution in the waveguide width variation of ±10 nm.
The non-adjacent crosstalk is increased up to −10 dBm, as shown in Figure 8. The different
colors represent one uniform distribution in the process variation.
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3. Results and Discussions

To demonstrate all the channel output spectrum in AWG and EG [22–25], we used the
commercial software of EPIPPROP from Photon Design to simulate the process variation
effects in two waveguide length shifts, +10 and −10 nm, shown in Figures 9 and 10. The
design parameters for 64-channel AWG and EG in the 1310 nm wavelength range are
listed in Table 2. In addition, the phase error from the waveguide array and grating tapers
will cause higher crosstalk up to −15 dB in AWG. On the other hand, the EG crosstalk
can always be maintained on the same level, −25 dB, due to the phase-error-free in the
reflective grating. The EG far-field intensity in Gaussian distribution can compensate
for the bidirectional MZDC spectrum to reach better OCT axial resolution through the
PSF execution on the interrogated wavelength range. The uneven AWG spectrum under



Micromachines 2022, 13, 373 8 of 12

±10 nm process errors causes the 3 dB linewidth to get narrow, shown in Figure 11. The
final flat wavelength response from compensation illustrates almost the exact SD-OCT
axial resolution at the full width at half maximum (FWHM) from AWG and EG, shown in
Figures 11 and 12. However, the MZDC interrogated EG demonstrates the lowest crosstalk,
−80 dBm, as shown in Figure 12, even though the process variation is applied.
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Figure 9. The simulated spectrum response for the AWG (a) without the process length shift; (b)
at 10 nm waveguide width shift; (c) at −10 nm waveguide width variation. Different color lines
represent individual wavelength output channels.
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Figure 10. The simulated spectrum response for the EG (a) without the process length shift; (b) at
10 nm waveguide width shift; (c) at −10 nm waveguide width variation. Different color lines
represent individual wavelength output channels.
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Table 2. AWG & EG design parameters.

Parameters AWG EG

Channel Spacing 1.58 nm 1.85 nm

Input Waveguide Spacing 1.9 mm 5 mm

Rowland Circle 528 mm 1300 mm

FSR (Free Spectral Range) 120 nm 120 nm

m (Grating Order) 6 8

θi (Input Angle) 0◦ 110◦

n (Effective Index of Planar Waveguides) 2.988 2.988

nc (Effective Index of Channel Waveguides) 2.516 2.516

DL (Optical Length Difference) 3.124 mm NA

dAWG 1.51 mm NA

dEG NA 5 mm
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The EG is used as a spectrometer and a spectral equalizer to compensate for responses
of bidirectional MZDC through the non-uniform EG spectrum. When only the bidirectional
MZDC effect in the SD-OCT system is considered, the free spectral range of EG can be
designed at least two times larger than 120 nm, and its spectrum can be treated as the
flat response. Compared with the EG spectral-equalizer function, the PSF only from the
bidirectional MZDC demonstrates the higher crosstalk up to 40 dB, shown in Figure 13.
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This interference spectrum distribution in space from the signal and reference signals
is called a PSF. The complex-valued depth-dependent OCT signal is obtained from an



Micromachines 2022, 13, 373 10 of 12

inverse Fourier transform of the interference [2]. Therefore, the inverse Fourier transform
of the source spectrum, the axial PSF convoluted with the sample reflectivity, gives the
OCT roll-off amplitude signal. The PSF roll-off simulations for MZDC interrogated with
the AWG and EG are shown in Figures 14 and 15, respectively. The results show that the
error caused by the AWG severely distorts the PSF at the deeper measurement depths,
and the SNR performance is inferior. The EG is less sensitive to ± 10 nm process error,
and simulation results demonstrate that the PSF roll-off can maintain superior signal
strength and resolution in the maximum measurement range. The SNR of EG is much
better than that of the AWG. For retaining the axial resolution and sensitivity, the EG is also
insensitive to process shifts such as MZDC and could be further utilized to compensate a 3
dB bidirectional MZDC structure for a broad and flat 100 nm wavelength response on the
interferometer-based on-chip SD-OCT.
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4. Conclusions

To make the free-space SD-OCT system highly integrated, we replaced the fiber-type
coupler and diffraction grating by MZDC and EG or AWG on a silicon chip, so that the
bar and cross side of MZDC can be output to the sample and reference arms. Then, the
coupler-based SD-OCT system executes the Michelson interferometer and accepts the
reflected beams from the same sides. At the same time, we found that the spectrum of
the reflected beam entering the MZDC from the bar and cross ends is not flat again, so
we compensated for this via the 64-channel EG spectrum response, which is insensitive
to the process variation. After the PSF simulation, we can observe that the SNR of MZDC
combined with AWG is as high as 61.3 dB without process error. Still, after considering
the process error, the SNR performance drops significantly to about 39.3 dB. The SNR
simulation result of MZDC interrogated with EG shows that the SNR performance can be
maintained at a great 64.5 dB with or without process error, so the SNR of MZDC combined
with EG is less sensitive to the process errors.
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