Preparation, Characterization and Magneto-Optical Properties of Sm-Doped Y2O3 Polycrystalline Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Sample Preparation
3. Results and Discussion
3.1. Powder Characteristics
3.2. Bulk Sample Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hibino, Y.; Koyama, T.; Sumi, S.; Awano, H.; Miwa, K.; Ono, S.; Kohda, M.; Chiba, D. Control of magnetism by electrical charge doping or redox reactions in a surfaceoxidized Co thin film with a solid-state capacitor structure. Appl. Phys. Express. 2017, 10. [Google Scholar]
- Wang, H.; Jin, Z.; Liu, X.; Zhang, Z.; Lin, X.; Cheng, Z.; Ma, G. Photoinduced ultrafast optical anisotropy encountered by spin-flip transition in La0.67Ca0.33MnO3. Appl. Phys. Lett. 2017, 110, 252407. [Google Scholar] [CrossRef]
- Musorin, A.I.; Sharipova, M.I.; Dolgova, T.V.; Inoue, M.; Fedyanin, A.A. Ultrafast faraday rotation of slow light. Phys. Rev. Appl. 2016, 6, 024012. [Google Scholar] [CrossRef] [Green Version]
- Lvovsky, A.I.; Sanders, B.C.; Tittel, W. Optical quantum memory. Nat. Photonics 2009, 3, 706–714. [Google Scholar] [CrossRef]
- Savukov, I.M.; Lee, S.-K.; Romalis, M.V. Optical detection of liquid-state NMR. Nature 2006, 442, 1021–1024. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-K.; Chiu, C.-Y.; Morris, S.M.; Tsai, M.-C.; Chen, C.-C.; Cheng, K.-T. Optically controllable linear-polarization rotator using chiral-azobenzene-doped liquid crystals. Materials 2017, 10, 1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zvezdin, A.K.; Kotov, V.A. Modern Magnetooptics and Magnetooptical Materials; Taylor & Francis: Abingdon-on-Thames, UK, 1997; ISBN 075030362X. [Google Scholar]
- Xu, Y.-N.; Gu, Z.-q.; Ching, W.Y. Electronic, structural, and optical properties of crystalline yttria. Phys. Rev. 1997, B56, 14993. [Google Scholar] [CrossRef]
- Biljan, T.; Gajović, A.; Meić, Z.; Meštrović, E. Preparation, characterization and luminescence of nanocrystalline Y2O3:Ho. J. Alloys Compd. 2007, 431, 217–220. [Google Scholar] [CrossRef]
- Kruk, A. Structural and magneto-optical characterization of La, Nd:Y2O3 Powders obtained via a Modified EDTA Sol-Gel Process and HIP-Treated ceramics. Materials 2020, 13, 4928. [Google Scholar] [CrossRef]
- Douillard, L.; Gautier, M.; Thromat, N.; Henriot, M.; Guittet, M.J. Local electronic structure of Ce-doped Y203. An XPS and XAS study. Phys. Rev. B 1994, 49, 16171–16180. [Google Scholar] [CrossRef]
- Tropf, W.J.; Thomas, M.E. Handbook of Optical Constants of Solids; Elsevier Inc.: Amsterdam, The Netherlands, 1998; Volume 2. [Google Scholar]
- Zhang, L.; Pan, W. Structural and thermo-mechanical properties of Nd:Y2O3 transparent ceramics. J. Am. Ceram. Soc. 2015, 98, 3326–3331. [Google Scholar] [CrossRef]
- Rodionov, E.; Shmidko, I.; Zolotovsky, A.; Kruchinin, S. Electroluminescence of Y2O3:Eu and Y2O3:Sm films. Mater. Sci. Pol. 2013, 232–239. [Google Scholar] [CrossRef]
- Kruk, A.; Wajler, A.; Bobruk, M.; Adamczyk, A.; Mrózek, M.; Gawlik, W.; Brylewski, T. Preparation of yttria powders co-doped with Nd3+, and La3+ using EDTA gel processes for application in transparent ceramics. J. Eur. Ceram. Soc. 2017, 37, 4139–4140. [Google Scholar] [CrossRef]
- Martel, J.F.; Jandl, S.; Viana, B.; Vivien, D. Crystal-field study of Sm3+ ions in Sm2O3, Sm3+:Gd2O3 and Sm3+:Y203. J. Phys. Chem. Solids 2000, 61, 1455–1463. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, X.; Wang, J.; Liu, P.; Li, D.; Wang, X.; An, L.; Zhang, J.; Xu, J.; Tang, D. Spark plasma sintering of Sm3+ doped Y2O3 transparent ceramics for visible light lasers. Ceram. Int. 2017, 43, 12057–12060. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, Q.; Ren, B.; You, L.; Sun, Y. Facile synthesis and luminescence properties of Y2O3:Ln(3+) (Ln(3+) = Eu(3+), Tb(3+), Dy(3+), Sm(3+), Er(3+), Ho(3+), Tm(3+), Yb(3+)/Er(3+), Yb(3+)/Tm(3+), Yb(3+)/Ho(3+)) microspheres. J. Nanosci. Nanotechnol. 2014, 14, 5781–5789. [Google Scholar] [CrossRef]
- Dupont, A.; Parent, C.; Garrec, B.L.; Heintz, J.M. Size and morphology control of Y2O3 nanopowders via a solgel route. J. Solid State Chem. 2003, 171, 152–160. [Google Scholar] [CrossRef]
- Back, M.; Massari, A.; Boffelli, M.; Gonella, F.; Riello, P.; Cristofori, D.; Riccò, R.; Enrichi, F. Optical investigation of Tb3+-doped Y2O3 nanocrystals prepared by Pechini-type sol–gel process. J. Nanopart. Res. 2012, 792, 10. [Google Scholar] [CrossRef]
- Ramasamy, S.; Yogamalar, R.; Bose, A.C. Structural and optical studies of yttrium oxide nanoparticles synthesized by Co-Precipitation method. Mater. Res. Bull. 2010, 45, 1165–1170. [Google Scholar]
- Mangalaraja, R.V.; Mouzon, J.; Hedström, P.; Kero, I.; Ramam, K.V.S.; Camurri, C.P.; Odén, M. Combustion synthesis of Y2O3 and Yb–Y2O3: Part, I. Nanopowders Charact. 2008, 208, 415–422. [Google Scholar]
- Tanner, P.A.; Fu, L. Morphology of Y2O3:Eu3+ prepared by hydrothermal synthesis. Chem. Phys. Lett. 2009, 470, 75–79. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Z.; Zuo, H. Interactions between Y2O3–Al mixture studied by solid-state reaction method. Vacuum 2013, 87, 7–10. [Google Scholar]
- Ikesue, A.; Kamata, K.; Yoshida, K. Synthesis of transparent Nd-doped HfO2- Y2O3 ceramics using HIP. J. Am. Ceram. Soc. 1996, 79, 359–364. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, J.; Pan, W. Vacuum sintering of transparent Cr: Y2O3 ceramics. Ceram. Int. 2015, 41, 8755–8760. [Google Scholar] [CrossRef]
- Li, X.; Xia, X.; Xu, H.; Zhong, S.; He, D. He High-temperature high pressure synthesis of monoclinic Y2O3. Mater. Lett. 2018, 239, 82–85. [Google Scholar] [CrossRef]
- Ghaderi, M.; Razavi, R.S.; Loghman-Estarki, M.; Ghorbani, S. Spark plasma sintering of transparent Y2O3 ceramic using hydrothermal synthesized nanopowders. Ceram. Int. 2016, 42, 14403–14410. [Google Scholar] [CrossRef]
- Kruk, A. Optical and structural properties of arc melted Ce or Pr –doped Y2O3 transparent ceramics. Ceram. Int. 2017, 43, 16909–16914. [Google Scholar] [CrossRef]
- Kruk, A. Fabrication of MgO high transparent ceramics by arc plasma synthesis. Opt. Mater. 2018, 84, 360–366. [Google Scholar] [CrossRef]
- Kruk, A.; Madej, D. Structural properties and Faraday effect of arc melted magnesia transparent polycrystal. Opt. Mater. 2020, 108, 110245. [Google Scholar] [CrossRef]
- Hu, D.; Liu, X.; Liu, Z.; Li, X.; Tian, F.; Zhu, D.; Yang, Z.; Wu, L.; Li, J. Fabrication of Dy2O3 transparent ceramics by vacuum sintering using precipitated powders. Magnetochemistry 2021, 7, 6. [Google Scholar] [CrossRef]
- Feng, S.; Qin, H.; Wu, G.; Jiang, H.; Zhao, J.; Liu, Y.; Luo, Z.; Qiao, J.; Jiang, J. Spectrum regulation of YAG: Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application. J. Eur. Ceram. Soc. 2017, 37, 10. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, B.-N.; Jang, B.-K. Fabrication of transparent Y2O3 ceramics by two-step spark plasma sintering. J. Am. Ceram. Soc. 2021, 104, 5501–5508. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Wang, H.; Huo, D.; Tan, W. Room-temperature magnetoresistive and magnetocaloric effect in La1−xBaxMnO3 compounds: Role of Griffiths phase with ferromagnetic metal cluster above Curie temperature. J. Appl. Phys. 2022, 131, 043901. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Permin, D.A.; Balabanov, S.S.; Palashov, O.V. Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics. Appl. Phys. Lett. 2016, 108, 161905. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 1918, 26, 98–100. [Google Scholar]
- Youvanidha, A.; Vidhya, B.; Nelson, P.I. Investigation on the structural, optical and electrical properties of ZnO-Y2O3 (YZO) thin films prepared by PLD for TCO layer applications. AIP Conf. Proc. 2019, 2166, 020023. [Google Scholar] [CrossRef]
- Kruk, A.; Jany, B.R.; Owczarczyk, K.; Madej, D. On the possibility of using arc plasma melting technique in preparation of transparent yttria ceramics. Opt. Appl. 2019, 49, 355–364. [Google Scholar]
- Bersons, I.; Veilande, R.; Balcers, O. Reflection and refraction of photons. Phys. Scr. 2022, 97, 3. [Google Scholar] [CrossRef]
- Mie, G. Beitrage zur optik truber medien, speziell kolloidaler metallosungen. Ann. Der Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, W.; Feng, J. Dependence of spectroscopic and thermal properties on concentration and temperature for Yb:Y2O3 transparent ceramics. J. Eur. Ceram. Soc. 2015, 35, 2547–2554. [Google Scholar] [CrossRef]
- Carnall, W.T.; Fields, P.R.; Rajnak, K. Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 1968, 49, 4424–4442. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakovets, V.V.; Yushina, I.V.; Antonova, O.V.; Pomelova, T. Correction of the band gap of Y2O3:Eu3+ phosphor. Opt. Spectrosc. 2016, 121, 862–866. [Google Scholar] [CrossRef]
- Quah, H.J.; Cheong, K.Y. Effects of post-deposition annealing ambient on band alignment of RF magnetron-sputtered Y2O3 film on gallium nitrid. Nanoscale Res. Lett. 2013, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Som, S.; Sharma, S.; Lochab, S. Ion induced modification of bandgap and CIE parameters in Y2O3:Dy3+ phosphor. Ceram. Int. 2013, 39, 7693–7701. [Google Scholar] [CrossRef]
- Dimitrov, V.; Sakka, S. Electronic Oxide Polarizability and Optical Basicity of Simple Oxide. J. Appl. Phys. 1996, 79, 1736–1740. [Google Scholar] [CrossRef]
- Nigara, Y. Measurement of the optical constants of yttrium oxide. Jpn. J. Appl. Phys. 1968, 7, 404–408. [Google Scholar] [CrossRef]
- Yamaga, M.; Uno, H.; Tsuda, S.-I.; Wells, J.-P.R.; Han, T.P. Resonant energy transfer and cross relaxation between Sm3+ ions in LiYF4 crystals. J. Lumin. 2012, 132, 1608–1617. [Google Scholar] [CrossRef]
- Kruk, A.; Brylewski, T.; Mrózek, M. Optical and magneto-optical properties of Nd0.1La0.1Y1.8O3 transparent ceramics. J. Lumin. 2019, 209, 333–339. [Google Scholar] [CrossRef]
- Cheng, H.; Lu, B.; Liu, Y.; Zhao, Y.; Sakka, Y.; Li, J.-G. Transparent magneto-optical Ho2O3 ceramics: Role of self-reactive resultant oxyfluoride additive and investigation of vacuum sintering kinetics. Ceram. Int. 2019, 45, 14761–14767. [Google Scholar] [CrossRef]
- Wang, M.; Lu, B.; Li, H. Fantastic valence impacts of Pr on microstructures and Faraday magneto-optical effects of transparent (Ho,Pr)2O3 ceramics. J. Eur. Ceram. Soc. 2021, 41, 5258–5263. [Google Scholar] [CrossRef]
- Snetkov, I.; Palashov, O. Cryogenic temperature characteristics of Verdet constant of terbium sesquioxide ceramics. Opt. Mater. 2016, 62, 697–700. [Google Scholar] [CrossRef]
- Zhuang, N.; Song, C.; Guo, L.; Wang, R.; Hu, X.; Zhao, B.; Lin, S.; Chen, J. Growth of terbium gallium garnet (TGG) magneto-optic crystals by edge-defined film-fed growth method. J. Cryst. Growth 2013, 381, 27–32. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, Z. Magneto-optical glass mixed with Tb3+ ions: High Verdet constant and luminescence properties. J. Lumin. 2021, 231, 117804. [Google Scholar] [CrossRef]
- Chen, Q.L.; Zhang, M.; Wang, H.; Wang, Q.W.; Ma, Q.H.; Li, J. Structures and magneto optical property of diamagnetic TiO2-TeO2-PbO-B2O3 glass. J. Non-Cryst. Solids 2017, 468, 58–66. [Google Scholar] [CrossRef]
- Chen, Q.; Su, K.; Wang, H.; Wang, Q. Multiferroic BiFeO3 enhanced Faraday rotation effect in magneto optical glasses. J. Non-Cryst. Solids 2018, 495, 75–84. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, H.; Xiao, X.; Wang, P.; Cui, X.; Lu, M.; Lin, C.; Dai, S.; Peng, B. High Verdet constants and diamagnetic responses of GeS2-In2S3-PbI2 chalcogenide glasses for integrated optics applications. Opt. Express 2017, 25, 20410–20420. [Google Scholar] [CrossRef]
- Yu, J.B.; Yi, G.; Zhang, Q.; Luo, Z.W.; Lu, A.X. A new type of NiO-doped phosphate glass with excellent faraday effects. Mater. Lett. 2018, 212, 25–27. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, L.; Hang, Y.; Wang, X. Effective development of Faraday rotator based on the highly transparent Tb2.96Pr0.04Ga5O12 single crystal. Appl. Phys. B 2016, 122, 61. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, L.; Hang, Y.; Wang, X. Improving characteristic of Faraday effect based on the Tm3+ doped terbium gallium garnet single crystal. J. Alloys Compd. 2016, 661, 62–65. [Google Scholar] [CrossRef]
- Lu, B.; Cheng, H.M.; Xu, X.X.; Chen, H.B. Preparation and characterization of transparent magneto-optical Ho2O3 ceramics. J. Am. Ceram. Soc. 2019, 102. [Google Scholar]
- Snetkov, I.L.; Yakovlev, A.I.; Permin, D.A.; Balabanov, S.S.; Palashov, O.V. Magneto-optical Faraday effect in dysprosium oxide (Dy2O3) based ceramics obtained by vacuum sintering. Opt. Lett. 2018, 43, 4041–4044. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, R.A.; Ikesue, R. Magneto-optic pyrochlore ceramics of Tb2Hf2O7 for Faraday rotator. Opt. Express 2019, 27. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, R.; Tokita, S.; Kawanaka, J.; Kawashima, T.; Kan, H.; Yagi, H.; Nozawa, H.; Yanagitani, T.; Fujimoto, Y.; Yoshida, H.; et al. Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics. Opt. Express 2007, 15, 11255–11261. [Google Scholar] [CrossRef]
- Ivanov, I.; Karimov, D.; Snetkov, I.; Palashov, O.; Kochurikhin, V.; Masalov, A.; Fedorov, V.; Ksenofontov, D.; Kabalov, Y. Study of the influence of Tb-Sc-Al garnet crystal composition on Verdet constant. Opt. Mater. 2017, 66, 106–109. [Google Scholar] [CrossRef]
Y2O3 | Sm0.01Y1.99O3 | ||||||||
---|---|---|---|---|---|---|---|---|---|
d222 [nm] | A [Å] | V [Å3] | Dxrd [nm] | ρ [1014 m−2] | d222 [nm] | A [Å] | V [Å3] | Dxrd [nm] | ρ [1014 m2] |
27.01 | 10.6 | 1191.02 | 15.05 | 4.14 | 31.2 | 10.62 | 1197.77 | 28.62 | 12.2 |
Sample | State | Verdet Constant | Ref | ||
---|---|---|---|---|---|
Ho2O3 | ceramic | −180 rad/Tm (632.8 nm) | −46 rad/Tm (1064nm) | 20 rad/Tm (1550 nm) | [63] |
(Ho0.9Pr0.1)2O3 | ceramic | −235 rad/Tm (635 nm) | −82 rad/Tm (1064 nm) | -36 rad/Tm (1550 nm) | [53] |
(Dy0.9Y0.05La0.05)2O3 | ceramic | 886 rad/Tm (405 nm) | 444 rad/Tm (532 nm) | 101 rad/Tm (1064 nm) | [64] |
Tb2O3 | ceramic | ~480 rad/Tm (632nm) | ~130 rad/Tm (1075 nm) | ~40 rad/Tm (1561nm) | [36] |
30%Tb2O3:Y2O3 | ceramic | ~220 rad/Tm (632nm) | ~42 rad/Tm (1075 nm) | ~17 rad/Tm (1561nm) | [36] |
Tb2Hf2O7 | ceramic | ~270 rad/Tm (532nm) | ~150 rad/Tm (650 nm) | 50 rad/Tm (1064 nm) | [65] |
T40 | glass | −158 rad/(T⋅m) (633 nm) | − 48.87 rad/Tm (1064 nm) | [56] | |
15%TiO2 | glass | ~0.225 min/G·cm (532 nm) | ~0.173 min/G·cm (632 nm) | ~0.168 min/G·cm (650 nm) | [57] |
TGG | monocrystalline | ~1.2 min/G·cm (460 nm) | ~0.75 min/G·cm (532 nm) | ~0.375 min/G·cm (695 nm) | [66] |
TSAG | monocrystalline | ~2 min/Oe·cm (405 nm) | ~1 min/Oe·cm (500 nm) | ~0.2 min/Oe·cm (500 nm) | [67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruk, A.; Ziewiec, K. Preparation, Characterization and Magneto-Optical Properties of Sm-Doped Y2O3 Polycrystalline Material. Micromachines 2022, 13, 2254. https://doi.org/10.3390/mi13122254
Kruk A, Ziewiec K. Preparation, Characterization and Magneto-Optical Properties of Sm-Doped Y2O3 Polycrystalline Material. Micromachines. 2022; 13(12):2254. https://doi.org/10.3390/mi13122254
Chicago/Turabian StyleKruk, Andrzej, and Krzysztof Ziewiec. 2022. "Preparation, Characterization and Magneto-Optical Properties of Sm-Doped Y2O3 Polycrystalline Material" Micromachines 13, no. 12: 2254. https://doi.org/10.3390/mi13122254
APA StyleKruk, A., & Ziewiec, K. (2022). Preparation, Characterization and Magneto-Optical Properties of Sm-Doped Y2O3 Polycrystalline Material. Micromachines, 13(12), 2254. https://doi.org/10.3390/mi13122254