Design of Wideband Decoupling Antenna Pairs for 5G Portable Devices at N77/N78/N79 Bands
Abstract
:1. Introduction
Ref. | Antenna Pairs | Element Size | Decoupling Methods | Frequency (GHz) | Isolation (dB) | ECC | Total Efficiency (%) | Ports |
---|---|---|---|---|---|---|---|---|
[22] | - | - | 3.4–3.6 (−10 dB) | <−10 | <0.055 | 65–80 | 10 | |
[23] | - | - | 3.3–3.7 (−6 dB) | <−15 | <0.1 | 50–75 | 8 | |
[24] | - | - | 3.4–3.6/4.8–5.0 (−10 dB) | <−16.5 | <0.01 | 74–85/70–82 | 4 | |
[25] | √ | PEs | 3.4–3.6 (−10 dB) | <−17 | <0.1 | - | 4 | |
[26] | √ | NLs | 2.3–2.4/3.3–3.6 (−6 dB) | <−15 | <0.15 | 47–73 | 8 | |
[27] | √ | PEs and DGS | 3.3–5.95 (−6 dB) | <−15 | <0.11 | 47–78 | 8 | |
Pro. | √ | DGS | 3.23–5.24 (−10 dB) | <−17.34 | <0.04 | 50–89 | 8 |
2. Analysis of Proposed Antenna Pair
2.1. Configuration
2.2. Antenna Pair Evolution
2.3. Parameters Analysis
3. Performances of the Eight-Port MIMO Antenna System
3.1. Simulated and Measured Results for MIMO System in Free Space
3.1.1. S-Parameters, Total Efficiency and Peak Gain
3.1.2. Diversity Performance
3.1.3. Radiation Pattern
3.2. Discussion of Proposed MIMO Antenna System Performance in Practical Applications
3.2.1. Handheld Effects
3.2.2. Mobile Phone Model Effects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Jiang, L.; Yeung, K.L. A General and Systematic Method to Design Neutralization Lines for Isolation Enhancement in MIMO Antenna Arrays. IEEE Trans. Veh. Technol. 2020, 69, 6242–6253. [Google Scholar] [CrossRef]
- Mishra, M.; Chaudhuri, S.; Kshetrimayum, R.S.; Chel, H. Low mutual coupling six-port planar antenna for the MIMO applications. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22439. [Google Scholar] [CrossRef]
- Birwal, A.; Singh, S.; Kanaujia, B.K.; Kumar, S. MIMO/Diversity Antenna with Neutralization Line for WLAN Applications. MAPAN 2021, 36, 763–772. [Google Scholar] [CrossRef]
- Tan, X.; Wang, W.; Wu, Y.; Liu, Y.; Kishk, A.A. Enhancing Isolation in Dual-Band Meander-Line Multiple Antenna by Employing Split EBG Structure. IEEE Trans. Antennas Propag. 2019, 67, 2769–2774. [Google Scholar] [CrossRef]
- Kim-Thi, P.; Hung Tran, H.; Tu Le, T. Circularly polarized MIMO antenna utilizing parasitic elements for simultaneous improvements in isolation, bandwidth and gain. AEU Int. J. Electron. Commun. 2021, 135, 153727. [Google Scholar] [CrossRef]
- Tran, H.H.; Nguyen-Trong, N. Performance Enhancement of MIMO Patch Antenna Using Parasitic Elements. IEEE Access 2021, 9, 30011–30016. [Google Scholar] [CrossRef]
- Sui, J.; Wu, K. A Self-Decoupled Antenna Array Using Inductive and Capacitive Couplings Cancellation. IEEE Trans. Antennas Propag. 2020, 68, 5289–5296. [Google Scholar] [CrossRef]
- Ye, Y.; Zhao, X.; Wang, J. Compact High-Isolated MIMO Antenna Module With Chip Capacitive Decoupler for 5G Mobile Terminals. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 928–932. [Google Scholar] [CrossRef]
- Deng, C.; Liu, D.; Lv, X. Tightly Arranged Four-Element MIMO Antennas for 5G Mobile Terminals. IEEE Trans. Antennas Propag. 2019, 67, 6353–6361. [Google Scholar] [CrossRef]
- Biswas, S.; Ghosh, C.K.; Banerjee, S.; Mandal, S.; Mandal, D. High port isolation of a dual polarized microstrip antenna array using DGS. J. Electromagn. Waves Appl. 2020, 34, 683–696. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Mishra, M.; Kshetrimayum, R.S.; Sonkar, R.K.; Bhattacharjee, S.; Saha, B. High port-to-port isolation dual circularly polarised microstrip patch antenna with multifunction DGS. IET Microw. Antennas Propag. 2020, 14, 2035–2044. [Google Scholar] [CrossRef]
- Divya, G.; Jagadeesh Babu, K.; Madhu, R. Quad-band hybrid DRA loaded MIMO antenna with DGS for isolation enhancement. Int. J. Microw. Wirel. Technol. 2022, 14, 247–256. [Google Scholar] [CrossRef]
- Garg, P.; Jain, P. Isolation Improvement of MIMO Antenna Using a Novel Flower Shaped Metamaterial Absorber at 5.5 GHz WiMAX Band. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 675–679. [Google Scholar] [CrossRef]
- Iqbal, A.; A Saraereh, O.; Bouazizi, A.; Basir, A. Metamaterial-Based Highly Isolated MIMO Antenna for Portable Wireless Applications. Electronics 2018, 7, 267. [Google Scholar] [CrossRef] [Green Version]
- Alibakhshikenari, M.; Khalily, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Limiti, E. Mutual-Coupling Isolation Using Embedded Metamaterial EM Bandgap Decoupling Slab for Densely Packed Array Antennas. IEEE Access 2019, 7, 51827–51840. [Google Scholar] [CrossRef]
- Li, M.; Ban, Y.; Xu, Z.; Guo, J.; Yu, Z. Tri-Polarized 12-Antenna MIMO Array for Future 5G Smartphone Applications. IEEE Access 2018, 6, 6160–6170. [Google Scholar] [CrossRef]
- Chang, L.; Yu, Y.; Wei, K.; Wang, H. Polarization-Orthogonal Co-frequency Dual Antenna Pair Suitable for 5G MIMO Smartphone With Metallic Bezels. IEEE Trans. Antennas Propag. 2019, 67, 5212–5220. [Google Scholar] [CrossRef]
- Eslami, A.; Nourinia, J.; Ghobadi, C.; Shokri, M. Four-element MIMO antenna for X-band applications. Int. J. Microw. Wirel. Technol. 2021, 13, 859–866. [Google Scholar] [CrossRef]
- Dkiouak, A.; Zakriti, A.; El Ouahabi, M. Design of a compact dual-band MIMO antenna with high isolation for WLAN and X-band satellite by using orthogonal polarization. J. Electromagn. Waves Appl. 2020, 34, 1254–1267. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Z. A Wideband Printed Dual-Antenna System With a Novel Neutralization Line for Mobile Terminals. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1428–1431. [Google Scholar] [CrossRef]
- Chu, F.; Wong, K. Planar Printed Strip Monopole With a Closely-Coupled Parasitic Shorted Strip for Eight-Band LTE/GSM/UMTS Mobile Phone. IEEE Trans. Antennas Propag. 2010, 58, 3426–3431. [Google Scholar] [CrossRef]
- Huang, J.; Dong, G.; Cai, J.; Li, H.; Liu, G. A Quad-Port Dual-Band MIMO Antenna Array for 5G Smartphone Applications. Electronics 2021, 10, 542. [Google Scholar] [CrossRef]
- Abdullah, M.; Altaf, A.; Anjum, M.R.; Arain, Z.A.; Jamali, A.A.; Alibakhshikenari, M.; Falcone, F.; Limiti, E. Future Smartphone: MIMO Antenna System for 5G Mobile Terminals. IEEE Access 2021, 9, 91593–91603. [Google Scholar] [CrossRef]
- Alja Afreh, S.S.; Altarawneh, B.; Alshamaileh, M.H.; Almajali, E.R.; Hussain, R.; Sharawi, M.S.; Xing, L.; Xu, Q. Ten Antenna Array Using a Small Footprint Capacitive-Coupled-Shorted Loop Antenna for 3.5 GHz 5G Smartphone Applications. IEEE Access 2021, 9, 33796–33810. [Google Scholar] [CrossRef]
- Ren, Z.; Zhao, A.; Wu, S. MIMO Antenna With Compact Decoupled Antenna Pairs for 5G Mobile Terminals. IEEE Antenn. Wirel. Pr. 2019, 18, 1367–1371. [Google Scholar] [CrossRef]
- Wang, M.; Xu, B.; Li, Y.; Luo, Y.; Zou, H.; Yang, G. Multiband multiple-input multiple-output antenna with high isolation for future 5G smartphone applications. Int. J. RF Microw. Comput. Aided Eng. 2019, 29, e21758. [Google Scholar] [CrossRef]
- Hei, Y.; He, J.; Li, W. Wideband Decoupled 8-Element MIMO Antenna for 5G Mobile Terminal Applications. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1448–1452. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Z. A Wideband Printed Dual-Antenna With Three Neutralization Lines for Mobile Terminals. IEEE Trans. Antennas Propag. 2014, 62, 1495–1500. [Google Scholar] [CrossRef]
- Chiu, C.; Cheng, C.; Murch, R.D.; Rowell, C.R. Reduction of Mutual Coupling Between Closely-Packed Antenna Elements. IEEE Trans. Antennas Propag. 2007, 55, 1732–1738. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, K.; Wang, Y.; Zhang, L.; Hu, Y. Design of Wideband Decoupling Antenna Pairs for 5G Portable Devices at N77/N78/N79 Bands. Micromachines 2022, 13, 1964. https://doi.org/10.3390/mi13111964
Du K, Wang Y, Zhang L, Hu Y. Design of Wideband Decoupling Antenna Pairs for 5G Portable Devices at N77/N78/N79 Bands. Micromachines. 2022; 13(11):1964. https://doi.org/10.3390/mi13111964
Chicago/Turabian StyleDu, Kaiwen, Yongshun Wang, Lijun Zhang, and Yao Hu. 2022. "Design of Wideband Decoupling Antenna Pairs for 5G Portable Devices at N77/N78/N79 Bands" Micromachines 13, no. 11: 1964. https://doi.org/10.3390/mi13111964
APA StyleDu, K., Wang, Y., Zhang, L., & Hu, Y. (2022). Design of Wideband Decoupling Antenna Pairs for 5G Portable Devices at N77/N78/N79 Bands. Micromachines, 13(11), 1964. https://doi.org/10.3390/mi13111964