Raman Spectroscopy and Spectral Signatures of AlScN/Al2O3
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Film Microstructure
3.2. Vibrational Properties
3.3. Temperature-Dependent Raman Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karmann, S.; Schenk, H.P.D.; Kaiser, U.; Fissel, A.; Richter, W. Growth of columnar aluminum nitride layers on Si(111) by molecular beam epitaxy. Mater. Sci. Eng. B 1997, 50, 228–232. [Google Scholar] [CrossRef]
- Iriarte, G.; Bjurstrom, J.; Westlinder, J.; Engelmark, F.; Katardjiev, I. Synthesis of c-axis-oriented AlN thin films on high-conducting layers: Al, Mo, Ti, TiN, and Ni. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 1170–1174. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, M.; Kamohara, T.; Ueno, N.; Sakamoto, M.; Kano, K.; Teshigahara, A.; Kawahara, N. Polarity inversion in aluminum nitride thin films under high sputtering power. Appl. Phys. Lett. 2007, 90, 151910. [Google Scholar] [CrossRef]
- Akiyama, M.; Kano, K.; Teshigahara, A. Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl. Phys. Lett. 2009, 95, 162107. [Google Scholar] [CrossRef]
- Tasnádi, F.; Alling, B.; Höglund, C.; Wingqvist, G.; Birch, J.; Hultman, L.; Abrikosov, I.A. Origin of the Anomalous Piezoelectric Response in Wurtzite ScxAl1−xN Alloys. Phys. Rev. Lett. 2010, 104, 137601. [Google Scholar] [CrossRef] [Green Version]
- Wingqvist, G.; Tasnadi, F.; Zukauskaite, A.; Birch, J.; Arwin, H.; Hultman, L. Increased electromechanical coupling in w-ScxAl1−xN. Appl. Phys. Lett. 2010, 97, 112902. [Google Scholar] [CrossRef]
- Travaglini, G.; Marabelli, F.; Monnier, R.; Kaldis, E.; Wachter, P. Electronic structure of ScN. Phys. Rev. B 1986, 34, 3876–3882. [Google Scholar] [CrossRef]
- Höglund, C.; Birch, J.; Alling, B.; Bareno, J.; Czigany, Z.; Persson, P.O.A.; Wingqvist, G.; Zukauskaite, A.; Hultman, L. Wurtzite structure ScxAl1−xN solid solution films grown by reactive magnetron sputter epitaxy: Structural characterization and first-principles calculations. J. Appl. Phys. 2010, 107, 123515. [Google Scholar] [CrossRef] [Green Version]
- Baeumler, M.; Lu, Y.; Kurz, N.; Kirste, L.; Prescher, M.; Christoph, T.; Wagner, J.; Žukauskaitė, A.; Ambacher, O. Optical constants and band gap of wurtzite Al1−xScxN/Al2O3 prepared by magnetron sputter epitaxy for scandium concentrations up to x = 0.41. J. Appl. Phys. 2019, 126, 045715. [Google Scholar] [CrossRef] [Green Version]
- Fichtner, S.; Wolff, N.; Lofink, F.; Kienle, L.; Wagner, B. AlScN: A III-V semiconductor based ferroelectric. J. Appl. Phys. 2019, 125, 114103. [Google Scholar] [CrossRef]
- Mayrhofer, P.M.; Eisenmenger-Sittner, C.; Euchner, H.; Bittner, A.; Schmid, U. Influence of c-axis orientation and scandium concentration on infrared active modes of magnetron sputtered ScxAl1−xN thin films. Appl. Phys. Lett. 2013, 103, 251903. [Google Scholar] [CrossRef]
- Deng, R.; Jiang, K.; Gall, D. Optical phonon modes in Al1−xScxN. J. Appl. Phys. 2014, 115, 013506. [Google Scholar] [CrossRef]
- Zi, J.; Büscher, H.; Falter, C.; Ludwig, W.; Zhang, K.; Xie, X. Raman shifts in Si nanocrystals. Appl. Phys. Lett. 1996, 69, 200–202. [Google Scholar] [CrossRef]
- Dzhagan, V.M.; Ya Valakh, M.; Raevskaya, A.E.; Stroyuk, A.L.; Kuchmiy, S.Y.; Zahn, D.R.T. Size effects on Raman spectra of small CdSe nanoparticles in polymer films. Nanotechnology 2008, 19, 305707. [Google Scholar] [CrossRef]
- Hähnlein, B.; Hofmann, T.; Tonisch, K.; Pezoldt, J.; Kovac, J.; Krischok, S. Structural Analysis of Sputtered ScxAl1−xN Layers for Sensor Applications. Key Eng. Mater. 2020, 865, 13–18. [Google Scholar] [CrossRef]
- Solonenko, D.; Lan, C.; Schmidt, C.; Stoeckel, C.; Hiller, K.; Zahn, D. Co-sputtering of Al1−xScxN thin films on Pt(111): A characterization by Raman and IR spectroscopies. J. Mater. Sci. 2020, 55, 1–11. [Google Scholar] [CrossRef]
- Song, Y.; Perez, C.; Esteves, G.; Lundh, J.S.; Saltonstall, C.B.; Beechem, T.E.; Yang, J.I.; Ferri, K.; Brown, J.E.; Tang, Z.; et al. Thermal Conductivity of Aluminum Scandium Nitride for 5G Mobile Applications and Beyond. ACS Appl. Mater. Interfaces 2021, 13, 19031–19041. [Google Scholar] [CrossRef]
- Lin, W.; Cheng, W.; Wang, Y.; Sun, Y.; Zha, Q.; Zeng, C.; Cui, Q.; Zhang, B. Fabrication and characterization of Al0.8Sc0.2N piezoelectric thin films. In Proceedings of the 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Chengdu, China, 8–11 April 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Sui, W.; Wang, H.; Lee, J.; Qamar, A.; Rais-Zadeh, M.; Feng, P.X.L. AlScN-on-SiC Thin Film Micromachined Resonant Transducers Operating in High-Temperature Environment up to 600 °C. Adv. Funct. Mater. 2022, 32, 2202204. [Google Scholar] [CrossRef]
- Lu, Y.; Reusch, M.; Kurz, N.; Ding, A.; Christoph, T.; Prescher, M.; Kirste, L.; Ambacher, O.; Žukauskaitė, A. Elastic modulus and coefficient of thermal expansion of piezoelectric Al1−xScxN (up to x = 0.41) thin films. APL Mater. 2018, 6, 076105. [Google Scholar] [CrossRef]
- Lu, Y.; Reusch, M.; Kurz, N.; Ding, A.; Christoph, T.; Kirste, L.; Lebedev, V.; Žukauskaitė, A. Surface Morphology and Microstructure of Pulsed DC Magnetron Sputtered Piezoelectric AlN and AlScN Thin Films. Phys. Status Solidi A 2018, 215, 1700559. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Watson, G.H.; Daniels, W.B.; Wang, C.S. Measurements of Raman intensities and pressure dependence of phonon frequencies in sapphire. J. Appl. Phys. 1981, 52, 956–958. [Google Scholar] [CrossRef]
- Thapa, J.; Liu, B.; Woodruff, S.D.; Chorpening, B.T.; Buric, M.P. Raman scattering in single-crystal sapphire at elevated temperatures. Appl. Opt. 2017, 56, 8598. [Google Scholar] [CrossRef] [PubMed]
- Zukauskaite, A.; Wingqvist, G.; Palisaitis, J.; Jensen, J.; Persson, P.O.A.; Matloub, R.; Muralt, P.; Kim, Y.; Birch, J.; Hultman, L. Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAl1−xN thin films. J. Appl. Phys. 2012, 111, 093527. [Google Scholar] [CrossRef] [Green Version]
- Moram, M.A.; Zhang, S. ScGaN and ScAlN: Emerging nitride materials. J. Mater. Chem. A 2014, 2, 6042–6050. [Google Scholar] [CrossRef]
- Artieda, A.; Barbieri, M.; Sandu, C.S.; Muralt, P. Effect of substrate roughness on c-oriented AlN thin films. J. Appl. Phys. 2009, 105, 024504. [Google Scholar] [CrossRef]
- Aissa, K.A.; Achour, A.; Elmazria, O.; Simon, Q.; Elhosni, M.; Boulet, P.; Robert, S.; Djouadi, M.A. AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering for SAW applications. J. Phys. Appl. Phys. 2015, 48, 145307. [Google Scholar] [CrossRef]
- Prakash, J.; Bose, G. Aluminum Nitride (AlN) Film Based Acoustic Devices: Material Synthesis and Device Fabrication. In Acoustic Waves—From Microdevices to Helioseismology; Beghi, M.G., Ed.; InTech: Vienna, Austria, 2011. [Google Scholar] [CrossRef]
- Thornton, J.A.; Hoffman, D. Stress-related effects in thin films. Thin Solid Films 1989, 171, 5–31. [Google Scholar] [CrossRef]
- Tanner, S.M.; Felmetsger, V.V. Microstructure of piezoelectric AlN films deposited by AC reactive sputtering. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Rome, Italy, 20–23 September 2009; pp. 1691–1694. [Google Scholar] [CrossRef]
- Sandu, C.S.; Parsapour, F.; Mertin, S.; Pashchenko, V.; Matloub, R.; LaGrange, T.; Heinz, B.; Muralt, P. Abnormal Grain Growth in AlScN Thin Films Induced by Complexion Formation at Crystallite Interfaces. Phys. Status Solidi A 2019, 216, 1800569. [Google Scholar] [CrossRef]
- Haboeck, U.; Siegle, H.; Hoffmann, A.; Thomsen, C. Lattice dynamics in GaN and AlN probed with first- and second-order Raman spectroscopy. Phys. Status Solidi C 2003, 0, 1710–1731. [Google Scholar] [CrossRef] [Green Version]
- Davydov, V.Y.; Kitaev, Y.E.; Goncharuk, I.N.; Smirnov, A.N.; Graul, J.; Semchinova, O.; Uffmann, D.; Smirnov, M.B.; Mirgorodsky, A.P.; Evarestov, R.A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 1998, 58, 12899–12907. [Google Scholar] [CrossRef] [Green Version]
- Arguello, C.A.; Rousseau, D.L.; Porto, S.P.S. First-Order Raman Effect in Wurtzite-Type Crystals. Phys. Rev. 1969, 181, 1351–1363. [Google Scholar] [CrossRef]
- Lundh, J.S.; Coleman, K.; Song, Y.; Griffin, B.A.; Esteves, G.; Douglas, E.A.; Edstrand, A.; Badescu, S.C.; Moore, E.A.; Leach, J.H.; et al. Residual stress analysis of aluminum nitride piezoelectric micromachined ultrasonic transducers using Raman spectroscopy. J. Appl. Phys. 2021, 130, 044501. [Google Scholar] [CrossRef]
- Lu, Y. Development and Characterization of Piezoelectric AlScN-Based Alloys for Electroacoustic Applications. Ph.D. Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany, 2019. [Google Scholar] [CrossRef]
- Richter, W. Resonant Raman scattering in semiconductors. In Solid-State Physics; Dornhaus, R., Nimtz, G., Richter, W., Eds.; Springer Tracts in Modern Physics; Springer: Berlin/Heidelberg, Germany, 1976; pp. 121–272. [Google Scholar]
- Beserman, R.; Hirlimann, C.; Balkanski, M.; Chevallier, J. Raman detection of phonon-phonon coupling in GaxIn1−xP. Solid State Commun. 1976, 20, 485–488. [Google Scholar] [CrossRef]
- Jusserand, B.; Slempkes, S. Evidence by Raman scattering on In1−xGaxAsyP1-y of the two-mode behaviour of In1−xGaxP. Solid State Commun. 1984, 49, 95–98. [Google Scholar] [CrossRef]
- Wang, X.-J.; Zhang, X.-Y. Disorder effects in Ga1−xAlxAs. Solid State Commun. 1986, 59, 869–872. [Google Scholar] [CrossRef]
- Hayashi, K.; Itoh, K.; Sawaki, N.; Akasaki, I. Raman scattering in AlxGa1−xN alloys. Solid State Commun. 1991, 77, 115–118. [Google Scholar] [CrossRef]
- Ramkumar, C.; Jain, K.P.; Abbi, S.C. Raman-scattering probe of anharmonic effects due to temperature and compositional disorder in III-V binary and ternary alloy semiconductors. Phys. Rev. B 1996, 53, 13672–13681. [Google Scholar] [CrossRef]
- Pinczuk, A.; Burstein, E. Fundamentals of Inelastic Light Scattering in Semiconductors and Insulators. In Light Scattering in Solids; Cardona, M., Ed.; Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 1975; pp. 23–78. [Google Scholar] [CrossRef]
- Beeman, D.; Tsu, R.; Thorpe, M.F. Structural information from the Raman spectrum of amorphous silicon. Phys. Rev. B 1985, 32, 874–878. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Paudel, T.R.; Lambrecht, W.R.L. Calculated phonon band structure and density of states and interpretation of the Raman spectrum in rocksalt ScN. Phys. Rev. B 2009, 79, 085205. [Google Scholar] [CrossRef]
- Fujii, M.; Kanzawa, Y.; Hayashi, S.; Yamamoto, K. Raman scattering from acoustic phonons confined in Si nanocrystals. Phys. Rev. B 1996, 54, R8373–R8376. [Google Scholar] [CrossRef]
- Ikezawa, M.; Okuno, T.; Masumoto, Y.; Lipovskii, A.A. Complementary detection of confined acoustic phonons in quantum dots by coherent phonon measurement and Raman scattering. Phys. Rev. B 2001, 64, 201315. [Google Scholar] [CrossRef] [Green Version]
- Lamb, H. On the Vibrations of an Elastic Sphere. Proc. Lond. Math. Soc. 1881, s1-13, 189–212. [Google Scholar] [CrossRef] [Green Version]
- Montagna, M.; Dusi, R. Raman scattering from small spherical particles. Phys. Rev. B 1995, 52, 10080–10089. [Google Scholar] [CrossRef]
- Lughi, V.; Clarke, D.R. Defect and stress characterization of AlN films by Raman spectroscopy. Appl. Phys. Lett. 2006, 89, 241911. [Google Scholar] [CrossRef]
- Parsapour, F.; Pashchenko, V.; Kurz, N.; Sandu, C.S.; LaGrange, T.; Yamashita, K.; Lebedev, V.; Muralt, P. Material Parameter Extraction for Complex AlScN Thin Film Using Dual Mode Resonators in Combination with Advanced Microstructural Analysis and Finite Element Modeling. Adv. Electron. Mater. 2019, 5, 1800776. [Google Scholar] [CrossRef]
- Urban, D.F.; Ambacher, O.; Elsässer, C. First-principles calculation of electroacoustic properties of wurtzite (Al,Sc)N. Phys. Rev. B 2021, 103, 115204. [Google Scholar] [CrossRef]
- Kurz, N.; Ding, A.; Urban, D.F.; Lu, Y.; Kirste, L.; Feil, N.M.; Žukauskaitė, A.; Ambacher, O. Experimental determination of the electro-acoustic properties of thin film AlScN using surface acoustic wave resonators. J. Appl. Phys. 2019, 126, 075106. [Google Scholar] [CrossRef]
- Gurunathan, R.; Hanus, R.; Jeffrey Snyder, G. Alloy scattering of phonons. Mater. Horizons 2020, 7, 1452–1456. [Google Scholar] [CrossRef]
- Scherrer, P. Nachr Ges wiss goettingen. Math. Phys. 1918, 2, 98–100. [Google Scholar]
- Cui, J.B.; Amtmann, K.; Ristein, J.; Ley, L. Noncontact temperature measurements of diamond by Raman scattering spectroscopy. J. Appl. Phys. 1998, 83, 7929–7933. [Google Scholar] [CrossRef]
- Hayes, J.M.; Kuball, M.; Shi, Y.; Edgar, J.H. Temperature Dependence of the Phonons of Bulk AlN. Jpn. J. Appl. Phys. 2000, 39, L710–L712. [Google Scholar] [CrossRef]
- Solonenko, D.; Gordan, O.D.; Lay, G.L.; Şahin, H.; Cahangirov, S.; Zahn, D.R.T.; Vogt, P. 2D vibrational properties of epitaxial silicene on Ag(111). 2D Mater. 2016, 4, 015008. [Google Scholar] [CrossRef]
- Balkanski, M.; Wallis, R.F.; Haro, E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B 1983, 28, 1928–1934. [Google Scholar] [CrossRef]
(high) | QLO | (O + A) | (O + A) | 2(TO) | Overtone [, M] | Optic Comb & over | |
---|---|---|---|---|---|---|---|
Position (FWHM) [] | Position (FWHM) [] | Position (FWHM) [] | Position (FWHM) [] | Position (FWHM) [] | Position (FWHM) [] | Position (FWHM) [] | |
AlN | 649.1 (12) | 883.7 (10) | 1189.4 (16) | 1258.1 (23) | 1347.3 (35) | ||
N | 630.2 (53) | 852.1 (36) | 963.5 (38) | 1071.8 (77) | 1185.6 (57) | 1241.8 (45) | 1303.5 (79) |
N | 622.6 (55) | 839.0 (57) | 952.9 (85) | 1061.6 (87) | 1169.9 (55) | 1232.0 (47) | 1292.3 (94) |
N | 603.8 (72) | 824.5 (65) | 942.0 (123) | 1054.3 (89) | 1156.4 (53) | 1221.3 (52) | 1282.6 (84) |
N | 592.2 (94) | 814.6 (69) | 930.0 (147) | 1052.3 (85) | 1149.5 (54) | 1215.9 (53) | 1279.0 (95) |
[GPa] | [g·] | [m ] | [ ] | |
---|---|---|---|---|
AlN | 351.7 | 3.194 | 10,493.5 | 1.65 × 10 |
N | 292.8 | 3.240 | 9506.0 | 1.91 × |
N | 253.1 | 3.268 | 8800.2 | 2.54 × |
N | 211.9 | 3.295 | 8020.4 | 4.73 × |
N | 169.3 | 3.319 | 7141.7 | 9.75 × |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solonenko, D.; Žukauskaitė, A.; Pilz, J.; Moridi, M.; Risquez, S. Raman Spectroscopy and Spectral Signatures of AlScN/Al2O3. Micromachines 2022, 13, 1961. https://doi.org/10.3390/mi13111961
Solonenko D, Žukauskaitė A, Pilz J, Moridi M, Risquez S. Raman Spectroscopy and Spectral Signatures of AlScN/Al2O3. Micromachines. 2022; 13(11):1961. https://doi.org/10.3390/mi13111961
Chicago/Turabian StyleSolonenko, Dmytro, Agnė Žukauskaitė, Julian Pilz, Mohssen Moridi, and Sarah Risquez. 2022. "Raman Spectroscopy and Spectral Signatures of AlScN/Al2O3" Micromachines 13, no. 11: 1961. https://doi.org/10.3390/mi13111961
APA StyleSolonenko, D., Žukauskaitė, A., Pilz, J., Moridi, M., & Risquez, S. (2022). Raman Spectroscopy and Spectral Signatures of AlScN/Al2O3. Micromachines, 13(11), 1961. https://doi.org/10.3390/mi13111961