Integrating Microfluidics and Electronics in Point-of-Care Diagnostics: Current and Future Challenges †
Abstract
:1. Introduction
2. Microfluidics Theory
3. Microfluidics Fabrication Techniques
4. Integration Challenge
5. Microfluidics Integration with Electronics in POC
6. Applications
7. Discussion and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- St John, A.; Price, C.P. Existing and Emerging Technologies for Point-of-Care Testing. Clin. Biochem. Rev. 2014, 35, 155–167. [Google Scholar] [PubMed]
- Lee-Lewandrowski, E.; Lewandrowski, K. Point-of-Care Testing: An Overview and a Look to the Future. Clin. Lab. Med. 2001, 21, 217–240. [Google Scholar] [CrossRef]
- EWagar, A.; Yasin, B.; Yuan, S. Point-of-care testing: Twenty years’ experience. Labmedicine 2008, 39, 560–563. [Google Scholar]
- Zhang, Z.; Ma, P.; Ahmed, R.; Wang, J.; Akin, D.; Soto, F.; Liu, B.F.; Li, P.; Demirci, U. Advanced point-of-care testing technologies for human acute respiratory virus detection. Adv. Mater. 2022, 34, 2103646. [Google Scholar] [CrossRef] [PubMed]
- Bodington, R.; Kassianides, X.; Bhandari, S. Point-of-care testing technologies for the home in chronic kidney disease: A narrative review. Clin. Kidney J. 2021, 14, 2316–2331. [Google Scholar] [CrossRef]
- Klonoff, D.C. Point-of-Care Blood Glucose Meter Accuracy in the Hospital Setting. Diabetes Spectr. 2014, 27, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Stopyra, J.P.; Snavely, A.C.; Scheidler, J.F.; Smith, L.M.; Nelson, R.D.; Winslow, J.E.; Pomper, G.J.; Ashburn, N.P.; Hendley, N.W.; Riley, R.F.; et al. Point-of-Care Troponin Testing during Ambulance Transport to Detect Acute Myocardial Infarction. Prehospital Emerg. Care 2020, 24, 751–759. [Google Scholar] [CrossRef]
- Evans, N.; Gournay, V.; Cabanas, F.; Kluckow, M.; Leone, T.; Groves, A.; McNamara, P.; Mertens, L. Point-of-care ultrasound in the neonatal intensive care unit: International perspectives. Semin. Fetal Neonatal Med. 2011, 16, 61–68. [Google Scholar] [CrossRef]
- Mendez, I.; Hof, M.C.V.D. Mobile remote-presence devices for point-of-care health care delivery. Can. Med. Assoc. J. 2013, 185, 1512–1516. [Google Scholar] [CrossRef] [Green Version]
- Indrasari, N.D.; Wonohutomo, J.P.; Sukartini, N. Comparison of point-of-care and central laboratory analyzers for blood gas and lactate measurements. J. Clin. Lab. Anal. 2019, 33, e22885. [Google Scholar] [CrossRef]
- Gubala, V.; Harris, L.F.; Ricco, A.J.; Tan, M.X.; Williams, D.E. Point of Care Diagnostics: Status and Future. Anal. Chem. 2011, 84, 487–515. [Google Scholar] [CrossRef]
- Weiss, S.L.; Fitzgerald, J.; Balamuth, F.; Alpern, E.; Lavelle, J.; Chilutti, M.; Grundmeier, R.; Nadkarni, V.M.; Thomas, N. Delayed Antimicrobial Therapy Increases Mortality and Organ Dysfunction Duration in Pediatric Sepsis*. Crit. Care Med. 2014, 42, 2409–2417. [Google Scholar] [CrossRef]
- Hand, M.; Brown, C.; Horan, M.; Simons-Morton, D. Access to Timely and Optimal Care of Patients with Acute Coronary Syndromes—Community Planning Considerations: A Report by the National Heart Attack Alert Program. J. Thromb. Thrombolysis 1998, 6, 19–46. [Google Scholar] [CrossRef]
- Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Di Filippo, A.; Di Matteo, A.; Colaneri, M. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat. Med. 2020, 26, 855–860. [Google Scholar] [CrossRef]
- De Venuto, D.; Annese, V.; Defazio, G.; Gallo, V.; Mezzina, G. Gait analysis and quantitative drug effect evaluation in Parkinson disease by jointly EEG-EMG monitoring. In Proceedings of the 2017 12th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS), Palma de Mallorca, Spain, 4–6 April 2017; 1–6. [Google Scholar] [CrossRef] [Green Version]
- De Venuto, D.; Annese, V.F.; Sangiovanni-Vincentelli, A.L. The ultimate IoT application: A cyber-physical system for ambient assisted living. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 2042–2045. [Google Scholar] [CrossRef]
- Conde, J.P.; Madaboosi, N.; Soares, R.R.; Fernandes, J.T.S.; Novo, P.; Moulas, G.; Chu, V. Lab-on-chip systems for integrated bioanalyses. Essays Biochem. 2016, 60, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Sia, S.K.; Kricka, L.J. Microfluidics and point-of-care testing. Lab Chip 2008, 8, 1982–1983. [Google Scholar] [CrossRef]
- Sista, R.; Hua, Z.; Thwar, P.; Sudarsan, A.; Srinivasan, V.; Eckhardt, A.; Pollack, M.; Pamula, V. Development of a digital microfluidic platform for point of care testing. Lab Chip 2008, 8, 2091–2104. [Google Scholar] [CrossRef] [Green Version]
- Myers, F.B.; Lee, L.P. Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 2008, 8, 2015–2031. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Akram, M.S.; Lowe, C.R. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 2013, 13, 2210–2251. [Google Scholar] [CrossRef]
- Gervais, L.; de Rooij, N.; Delamarche, E. Microfluidic Chips for Point-of-Care Immunodiagnostics. Adv. Mater. 2011, 23, H151–H176. [Google Scholar] [CrossRef] [PubMed]
- Munyan, J.W.; Fuentes, H.V.; Draper, M.; Kelly, R.T.; Woolley, A.T. Electrically actuated, pressure-driven microfluidic pumps. Lab Chip 2003, 3, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Dillon, J.; Kearn, J.; Murray, C.; O’Connor, V.; Holden-Dye, L.; Morgan, H. NeuroChip: A Microfluidic Electrophysiological Device for Genetic and Chemical Biology Screening of Caenorhabditis elegans Adult and Larvae. PLoS ONE 2013, 8, e64297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Park, J.K. Integrated microfluidic pumps and valves operated by finger actuation. Lab Chip 2019, 19, 2973–2977. [Google Scholar] [CrossRef] [PubMed]
- Tabeling, P. Introduction to Microfluidics; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Mansur, E.A.; Ye, M.; Wang, Y.; Dai, Y. A State-of-the-Art Review of Mixing in Microfluidic Mixers. Chin. J. Chem. Eng. 2008, 16, 503–516. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Wang, W.-T.; Liu, C.-C.; Fu, L.-M. Passive mixers in microfluidic systems: A review. Chem. Eng. J. 2016, 288, 146–160. [Google Scholar] [CrossRef]
- Lee, C.Y.; Chang, C.L.; Wang, Y.N.; Fu, L.M. Microfluidic Mixing: A Review. Int. J. Mol. Sci. 2011, 12, 3263–3287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhang, B.; Dang, D.; Yang, X.; Yang, W.; Liang, W. A review of microfluidic-based mixing methods. Sens. Actuators A: Phys. 2022, 344, 113757. [Google Scholar] [CrossRef]
- Mbanjwa, M.B.; Harding, K.; Gledhill, I.M.A. Numerical Modelling of Mixing in a Microfluidic Droplet Using a Two-Phase Moving Frame of Reference Approach. Micromachines 2022, 13, 708. [Google Scholar] [CrossRef]
- Dixit, C.K.; Kaushik, A. Microfluidics for Biologists; Springer: New York, NY, USA, 2016; ISBN 3319400355. [Google Scholar]
- Bruus, H. Theoretical Microfluidics; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Niculescu, A.-G.; Mihaiescu, D.E.; Grumezescu, A.M. A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis. Int. J. Mol. Sci. 2022, 23, 8293. [Google Scholar] [CrossRef] [PubMed]
- Kundu, B.; Saha, S. Review and Analysis of Electro-Magnetohydrodynamic Flow and Heat Transport in Microchannels. Energies 2022, 15, 7017. [Google Scholar] [CrossRef]
- Castillo-León, J. Microfluidics and Lab-on-a-Chip Devices: History and Challenges. In Lab-on-a-Chip Devices and Micro-Total Analysis Systems; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–15. [Google Scholar] [CrossRef]
- Jokinen, V.; Franssila, S. Capillarity in microfluidic channels with hydrophilic and hydrophobic walls. Microfluid. Nanofluidics 2008, 5, 443–448. [Google Scholar] [CrossRef]
- de Leon, P.J.P.; Velásquez-García, L.F. Optimization of capillary flow through open-microchannel and open-micropillar arrays. J. Phys. D Appl. Phys. 2016, 49, 055501. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Dostie, A.M.; Lee, U.N.; Berthier, J.; Theberge, A.B. Open Microfluidic Capillary Systems. Anal. Chem. 2019, 91, 8739–8750. [Google Scholar] [CrossRef]
- Olanrewaju, A.; Beaugrand, M.; Yafia, M.; Juncker, D. Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits. Lab Chip 2018, 18, 2323–2347. [Google Scholar] [CrossRef] [Green Version]
- Gale, B.K.; Jafek, A.R.; Lambert, C.J.; Goenner, B.L.; Moghimifam, H.; Nze, U.C.; Kamarapu, S.K. A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. Inventions 2018, 3, 60. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Annese, V.F.; Velugotla, S.; Al-Rawhani, M.; Cheah, B.C.; Grant, J.; Barrett, M.P.; Cumming, D.R.S. Disposable Paper-on-CMOS Platform for Real-Time Simultaneous Detection of Metabolites. IEEE Trans. Biomed. Eng. 2020, 67, 2417–2426. [Google Scholar] [CrossRef] [Green Version]
- Weigl, B.H.; Bardell, R.; Schulte, T.; Battrell, F.; Hayenga, J. Design and Rapid Prototyping of Thin-Film Laminate-Based Microfluidic Devices. Biomed. Microdevices 2001, 3, 267–274. [Google Scholar] [CrossRef]
- Bragheri, F.; Vázquez, R.M.; Osellame, R. Microfluidics. In Three-Dimensional Microfabrication Using Two-Photon Polymerization; Elsevier: Amsterdam, The Netherlands, 2020; pp. 493–526. [Google Scholar]
- Bustillo, J.; Howe, R.; Muller, R. Surface micromachining for microelectromechanical systems. Proc. IEEE 1998, 86, 1552–1574. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Y.-K.; Chen, S.-C.; Huang, W.-L.; Hsu, K.-P.; Gorday, K.A.V.; Wang, T.; Wang, J. Direct Micromachining of Microfluidic Channels on Biodegradable Materials Using Laser Ablation. Polymers 2017, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Abgrall, P.; Gué, A.-M. Lab-on-chip technologies: Making a microfluidic network and coupling it into a complete microsystem—a review. J. Micromech. Microeng. 2007, 17, R15–R49. [Google Scholar] [CrossRef]
- Fluidic Factory 3D Printing System (Using Coc). Available online: https://www.dolomite-microfluidics.com/product/fluidic-factory-3d-printer/ (accessed on 23 January 2020).
- Mukhopadhyay, R. When PDMS isn’t the best. Anal. Chem. 2007, 79, 3248–3253. [Google Scholar] [CrossRef] [PubMed]
- Rusmini, F.; Zhong, Z.; Feijen, J. Protein Immobilization Strategies for Protein Biochips. Biomacromolecules 2007, 8, 1775–1789. [Google Scholar] [CrossRef] [PubMed]
- Asanomi, Y.; Yamaguchi, H.; Miyazaki, M.; Maeda, H. Enzyme-Immobilized Microfluidic Process Reactors. Molecules 2011, 16, 6041–6059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyries, K.A.; Marquette, A.C.A.; Blum, L.J. Straightforward Protein Immobilization on Sylgard 184 PDMS Microarray Surface. Langmuir 2007, 23, 4523–4527. [Google Scholar] [CrossRef]
- Marquette, C.A.; Blum, L.J. Direct immobilization in poly(dimethylsiloxane) for DNA, protein and enzyme fluidic biochips. Anal. Chim. Acta 2004, 506, 127–132. [Google Scholar] [CrossRef]
- Kreider, A.; Richter, K.; Sell, S.; Fenske, M.; Tornow, C.; Stenzel, V.; Grunwald, I. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes. Appl. Surf. Sci. 2013, 273, 562–569. [Google Scholar] [CrossRef]
- Betancor, L.; López-Gallego, F.; Alonso-Morales, N.; Dellamora, G.; Mateo, C.; Fernandez-Lafuente, R.; Guisan, J.M. Glutaraldehyde in Protein Immobilization. In Immobilization of Enzymes and Cells; Humana Press: Totowa, NJ, USA, 2006; pp. 57–64. [Google Scholar] [CrossRef]
- Honda, T.; Miyazaki, M.; Nakamura, H.; Maeda, H. Immobilization of enzymes on a microchannel surface through cross-linking polymerization. Chem. Commun. 2005, 40, 5062–5064. [Google Scholar] [CrossRef]
- Williams, R.; Blanch, H. Covalent immobilization of protein monolayers for biosensor applications. Biosens. Bioelectron. 1994, 9, 159–167. [Google Scholar] [CrossRef]
- Roman, G.T.; Kennedy, R.T. Fully integrated microfluidic separations systems for biochemical analysis. J. Chromatogr. A 2007, 1168, 170–188. [Google Scholar] [CrossRef]
- Datta-Chaudhuri, T.; Smela, E.; Abshire, P.A. System-on-Chip Considerations for Heterogeneous Integration of CMOS and Fluidic Bio-Interfaces. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1129–1142. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.M.; Gumus, A.; Nassar, J.M.; Hussain, M.M. CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Adv. Mater. 2018, 30, e1705759. [Google Scholar] [CrossRef] [Green Version]
- Brennan, K.F.; Brown, A.S. Theory of Modern Electronic Semiconductor Devices; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar] [CrossRef]
- Huang, Y.; Mason, A.J. Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 2013, 13, 3929–3934. [Google Scholar] [CrossRef] [Green Version]
- Muluneh, M.; Issadore, D. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics. Lab Chip 2014, 14, 4552–4558. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Liu, Y.; Ham, D.; Westervelt, R.M. Integrated cell manipulation system—CMOS/microfluidic hybrid. Lab Chip 2007, 7, 331–337. [Google Scholar] [CrossRef]
- Hsu, C.-P.; Chen, P.-C.; Wang, Y.-L. A novel packaging technology for disposable FET-based biosensors with microfluidic channels. In Proceedings of the 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Los Angeles, CA, USA, 9–12 April 2017; pp. 375–378. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, Q.; Korman, C.E.; Li, Z.; Zaghloul, M.E. Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics. Sci. Rep. 2013, 3, srep01098. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Hu, X.; Kundu, S.; Nag, A.; Afsarimanesh, N.; Sapra, S.; Mukhopadhyay, S.C.; Han, T. Silicon-based sensors for biomedical applications: A review. Sensors 2019, 19, 2908. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.B.; Annese, V.F.; Cumming, D.R. Commercial Aspects of Biosensors for Diagnostics and Environmental Monitoring. In Advances in Nanosensors for Biological and Environmental Analysis; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 8; pp. 133–142. ISBN 9780128174562. [Google Scholar] [CrossRef]
- Liu, J.; Geng, Z.; Fan, Z.; Liu, J.; Chen, H. Point-of-care testing based on smartphone: The current state-of-the-art (2017–2018). Biosens. Bioelectron. 2019, 132, 17–37. [Google Scholar] [CrossRef]
- Annese, V.F.; Giagkoulovits, C.; Hu, C.; Al-Rawhani, M.A.; Grant, J.; Patil, S.B.; Cumming, D.R.S. Micromolar Metabolite Measurement in an Electronically Multiplexed Format. IEEE Trans. Biomed. Eng. 2022, 69, 2715–2722. [Google Scholar] [CrossRef]
- Ghafar-Zadeh, E.; Sawan, M.; Therriault, D. Novel direct-write CMOS-based laboratory-on-chip: Design, assembly and experimental results. Sens. Actuators A: Phys. 2007, 134, 27–36. [Google Scholar] [CrossRef]
- Blanco, F.J.; Agirregabiria, M.; Berganzo, J.; Mayora, K.; Elizalde, J.; Calle, A.; Domínguez, C.; Lechuga, L. Microfluidic-optical integrated CMOS compatible devices for label-free biochemical sensing. J. Micromech. Microeng. 2006, 16, 1006–1016. [Google Scholar] [CrossRef]
- Annese, V.F.; Patil, S.B.; Hu, C.; Giagkoulovits, C.; Al-Rawhani, M.A.; Grant, J.; Macleod, M.; Clayton, D.J.; Heaney, L.M.; Daly, R.; et al. A monolithic single-chip point-of-care platform for metabolomic prostate cancer detection. Microsyst. Nanoeng. 2021, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Kuan, D.-H.; Wang, I.-S.; Lin, J.-R.; Yang, C.-H.; Huang, C.-H.; Lin, Y.-H.; Lin, C.-T.; Huang, N.-T. A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes. Lab Chip 2016, 16, 3105–3113. [Google Scholar] [CrossRef] [PubMed]
- Welch, D.; Christen, J.B. Seamless integration of CMOS and microfluidics using flip chip bonding. J. Micromech. Microeng. 2013, 23, 035009. [Google Scholar] [CrossRef]
- Wu, A.; Wang, L.; Jensen, E.; Mathies, R.; Boser, B. Modular integration of electronics and microfluidic systems using flexible printed circuit boards. Lab Chip 2010, 10, 519–521. [Google Scholar] [CrossRef]
- Yen, P.-W.; Lin, S.-C.; Huang, Y.-C.; Huang, Y.-J.; Tung, Y.-C.; Lu, S.-S.; Lin, C.-T. A Low-Power CMOS Microfluidic Pump Based on Travelling-Wave Electroosmosis for Diluted Serum Pumping. Sci. Rep. 2019, 9, 14794. [Google Scholar] [CrossRef] [Green Version]
- Panahi, A.; Ghafar-Zadeh, E. A Hybrid Microfluidic Electronic Sensing Platform for Life Science Applications. Micromachines 2022, 13, 425. [Google Scholar] [CrossRef]
- Annese, V.F.; Hu, C.; Barrett, M.P.; Jones, R.; Cumming, D.R.S. A CMOS-Based Multi-Omics Detection Platform for Simultaneous Quantification of Proteolytically Active Prostate Specific Antigen and Glutamate in Urine. IEEE Sens. J. 2022, 22, 18870–18877. [Google Scholar] [CrossRef]
- Hu, C.; Annese, V.F.; Giagkoulovits, C.; Barrett, M.P.; Cumming, D.R.S. Factor VIII companion diagnostic for haemophilia. Front. Bioeng. Biotechnol. 2022, 10, 1006600. [Google Scholar] [CrossRef]
- Annese, V.F.; Hu, C.; Accarino, C.; Giagkoulovits, C.; Patil, S.B.; Al-Rawhani, M.A.; Beeley, J.; Cheah, B.C.; Velugotla, S.; Grant, J.P.; et al. The Multicorder: A Handheld Multimodal Metabolomics-on-CMOS Sensing Platform. In Proceedings of the 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), Otranto, Italy, 13–14 June 2019; pp. 130–135. [Google Scholar] [CrossRef] [Green Version]
- Al-Rawhani, M.A.; Hu, C.; Giagkoulovits, C.; Annese, V.F.; Cheah, B.C.; Beeley, J.; Velugotla, S.; Accarino, C.; Grant, J.P.; Mitra, S.; et al. Multimodal Integrated Sensor Platform for Rapid Biomarker Detection. IEEE Trans. Biomed. Eng. 2019, 67, 614–623. [Google Scholar] [CrossRef]
- Chung, J.; Hwang, H.Y.; Chen, Y.; Lee, T.Y. Microfluidic packaging of high-density CMOS electrode array for labon-a-chip applications. Sens. Actuators B-Chem. 2018, 254, 542–550. [Google Scholar] [CrossRef]
- Hogan, B.T.; Dyakov, S.A.; Brennan, L.J.; Younesy, S.; Perova, T.S.; Gun’Ko, Y.K.; Craciun, M.F.; Baldycheva, A. Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip. Sci. Rep. 2017, 7, srep42120. [Google Scholar] [CrossRef] [Green Version]
- Melino, G.; Accarino, C.; Riehle, M.; Potter, M.; Fineron, P.; Annese, V.F.; Grant, J.P.; Al-Rawhani, M.A.; Beeley, J.; Carranza, I.E.; et al. Capsule Endoscopy Compatible Fluorescence Imager Demonstrated Using Bowel Cancer Tumours. IEEE Sens. J. 2020, 20, 9763–9771. [Google Scholar] [CrossRef]
- Kadri, K. Polymerase Chain Reaction (PCR): Principle and Applications. Synth. Biol.-New Interdiscip. Sci. 2019, 113, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Nagy, B.; Al-Rawhani, M.A.; Cheah, B.C.; Barrett, M.P.; Cumming, D.R.S. Immunoassay Multiplexing on a Complementary Metal Oxide Semiconductor Photodiode Array. ACS Sens. 2018, 3, 953–959. [Google Scholar] [CrossRef]
- Hayes, B.; Murphy, C.; Crawley, A.; O’Kennedy, R. Developments in Point-of-Care Diagnostic Technology for Cancer Detection. Diagnostics 2018, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Uludag, Y.; Narter, F.; Sağlam, E.; Köktürk, G.; Gök, M.Y.; Akgün, M.; Barut, S.; Budak, S. An integrated lab-on-a-chip-based electrochemical biosensor for rapid and sensitive detection of cancer biomarkers. Anal. Bioanal. Chem. 2016, 408, 7775–7783. [Google Scholar] [CrossRef]
- Zhang, T.; He, Y.; Wei, J.; Que, L. Nanostructured optical microchips for cancer biomarker detection. Biosens. Bioelectron. 2012, 38, 382–388. [Google Scholar] [CrossRef]
- Sharma, S.; Zapatero-Rodríguez, J.; Estrela, P.; O’Kennedy, R.J. Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics. Biosensors 2015, 5, 577–601. [Google Scholar] [CrossRef] [Green Version]
- Meyer, A.R.; Gorin, M.A. First point-of-care PSA test for prostate cancer detection. Nat. Rev. Urol. 2019, 16, 331–332. [Google Scholar] [CrossRef]
- United Kingdom|Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/united-kingdom.html (accessed on 31 January 2020).
- Pundir, C.S.; Lata, S.; Narwal, V. Biosensors for determination of D and L-amino acids: A review. Biosens. Bioelectron. 2018, 117, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Hoeben, B.; Gunneweg, F. A Critical Review on Glutamate Sensing. 2015. Available online: https://www.researchgate.net/publication/281775136_A_critical_review_on_glutamate_sensing (accessed on 1 October 2022). [CrossRef]
- Rahimi, P.; Joseph, Y. Enzyme-based biosensors for choline analysis: A review. TrAC Trends Anal. Chem. 2018, 110, 367–374. [Google Scholar] [CrossRef]
- Yamkamon, V.; Phakdee, B.; Yainoy, S.; Suksrichawalit, T.; Tatanandana, T.; Sangkum, P.; Eiamphungporn, W. Development of sarcosine quantification in urine based on enzyme-coupled colorimetric method for prostate cancer diagnosis. EXCLI J. 2018, 17, 467–478. [Google Scholar] [PubMed]
- Choi, M.M.F. Progress in Enzyme-Based Biosensors Using Optical Transducers. Mikrochim. Acta 2004, 148, 107–132. [Google Scholar] [CrossRef]
- Kwak, Y.H.; Lee, J.; Lee, J.; Kwak, S.H.; Oh, S.; Paek, S.-H.; Ha, U.-H.; Seo, S. A simple and low-cost biofilm quantification method using LED and CMOS image sensor. J. Microbiol. Methods 2014, 107, 150–156. [Google Scholar] [CrossRef]
- Chang, Y.-W.; Yu, P.-C.; Huang, Y.-T.; Yang, Y.-S. A CMOS-Compatible Optical Biosensing System Based on Visible Absorption Spectroscopy. In Proceedings of the 2007 IEEE Conference on Electron Devices and Solid-State Circuits, Tainan, Taiwan, 20–22 December 2007; pp. 1099–1102. [Google Scholar] [CrossRef]
- Dincer, C.; Bruch, R.; Kling, A.; Dittrich, P.S.; Urban, G.A. Multiplexed Point-of-Care Testing–xPOCT. Trends Biotechnol. 2017, 35, 728–742. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, V.; Pamula, V.; Pollack, M.; Fair, R. A digital microfluidic biosensor for multianalyte detection. In Proceedings of the Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, 23 January 2003; pp. 327–330. [Google Scholar] [CrossRef]
- Wang, N.; Ha, C.; Park, C.B.; Joo, Y. Spectrophotometer on a focal-plane-array chip for the high-throughput analysis of enzymatic reaction. In Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003, Tucson, AZ, USA, 27–28 October 2003. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Yang, C.-E.; Ko, C.-H.; Wang, Y.-N.; Liu, C.-C.; Fu, L.-M. Microfluidic detection platform with integrated micro-spectrometer system. Chem. Eng. J. 2020, 393, 124700. [Google Scholar] [CrossRef]
- Campuzano, S.; Barderas, R.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical biosensing to assist multiomics analysis in precision medicine. Curr. Opin. Electrochem. 2021, 28, 100703. [Google Scholar] [CrossRef]
- Web of Science. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 1 October 2022).
- Madou, M.J.; Kellogg, G.J. LabCD: A centrifuge-based microfluidic platform for diagnostics. In Proceedings of the BiOS ’98 International Biomedical Optics Symposium, San Jose, CA, USA, 27–29 January 1998; SPIE: Bellingham, WA, USA, 1998; Volume 80. [Google Scholar]
- Graiver, D.; Farminer, K.W.; Narayan, R. A Review of the Fate and Effects of Silicones in the Environment. J. Polym. Environ. 2003, 11, 129–136. [Google Scholar] [CrossRef]
- Griessbach, E.F.; Lehmann, R. Degradation of polydimethylsiloxane fluids in the environment—A review. Chemosphere 1999, 38, 1461–1468. [Google Scholar] [CrossRef]
- Annese, V.F.; De Venuto, D.; Martin, C.; Cumming, D.R.S. Biodegradable pressure sensor for health-care. In Proceedings of the 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), Marseille, France, 7–10 December 2014; pp. 598–601. [Google Scholar] [CrossRef]
- Annese, V.F.; De Venuto, D.; Martin, C.; Cumming, D.R. Biodegradable Barometric Endoradiosonde for Biotelemetry Applications. Int. J. Eng. Sci. Innov. Technol. (IJESIT) 2014, 3, 298–306. [Google Scholar]
- Annese, V.F.; Martin, C.; Cumming, D.R.S.; De Venuto, D. Wireless capsule technology: Remotely powered improved high-sensitive barometric endoradiosonde. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 1370–1373. [Google Scholar] [CrossRef]
- Accarino, C.; Annese, V.F.; Cheah, B.C.; Al-Rawhani, M.A.; Shah, Y.D.; Beeley, J.; Giagkoulovitis, C.; Mitra, S.; Cumming, D.R. Noise characteristics with CMOS sensor array scaling. Measurement 2020, 152, 107325. [Google Scholar] [CrossRef]
- Accarino, C.; Melino, G.; Annese, V.F.; Al-Rawhani, M.A.; Shah, Y.D.; Maneuski, D.; Giagkoulovits, C.; Grant, J.P.; Mitra, S.; Buttar, C.; et al. A 64 × 64 SPAD Array for Portable Colorimetric Sensing, Fluorescence and X-ray Imaging. IEEE Sens. J. 2019, 19, 7319–7327. [Google Scholar] [CrossRef] [Green Version]
- Shah, Y.D.; Connolly, P.W.R.; Grant, J.P.; Hao, D.; Accarino, C.; Ren, X.; Kenney, M.; Annese, V.; Rew, K.G.; Greener, Z.M.; et al. Ultralow-light-level color image reconstruction using high-efficiency plasmonic metasurface mosaic filters. Optica 2020, 7, 632. [Google Scholar] [CrossRef]
Photolithography | Printing | Moulding | |
---|---|---|---|
Resolution | µm | tens of µm | Down to µm scale (depending on the technique used for the fabrication of the mould) |
Time to manufacture | - From hours to days - Several fabricating steps - Cleanroom facility needed | - From minutes to hours - Largely automatised - One device is fabricated at one time - No cleanroom facility needed | - Minutes * - Several devices are fabricated at one time - Can be automatised - No cleanroom facility needed * |
Adaptability | - Wide range of substrates and structural materials - Channels have a rectangular cross-section | - Wide range of substrates and structural materials - 3D structures - Highly customisable | - Wide range of substrates and structural materials - Network topology depends on the technique used for the fabrication of the mould |
Cost per device | High | Low | Low ** |
Suitable for large scale production | No (expensive and slow process) | No (slow process, lower resolution) | Yes |
Technique | Target Substrate | Channels | Intermediate Layer | Distance to Substrate | Material | Ref. |
---|---|---|---|---|---|---|
Replica moulding | CMOS chip | 4 | No | 0 | Epoxy, PDMS | [71,74] |
Replica moulding (moulding and encapsulation) | CMOS chip | n.d. | No | 0 | PDMS | [67] |
Replica moulding (moulding and encapsulation) | CMOS chip and PCB | 1 | No | 0 | PDMS | [78] |
Replica moulding (moulding and adhesive bonding) | ISFET and PCB | 1 | No | 0 | PDMS | [79] |
Replica moulding (moulding and adhesive bonding) | CMOS and flexible PCB | 4 | Yes (Polyamide) | 85 µm | PDMS | [76] |
Replica moulding (moulding and plasma bonding) | IC chip | 1 | No | 0 | PDMS | [64] |
Micromachining (encapsulation) | CMOS chip | 2 | No | 0 | Epoxy | [80] |
Micromachining (encapsulation) | CMOS chip | 1 | No | 0 | Epoxy | [60,81,82,83] |
Micromachining (photolithography and plasma bonding) | CMOS chip | n.d. | No | 0 | SU-8 | [73] |
Micromachining (planarization, photolithography) | CMOS chip | n.d. | Yes (ONO) | 300 µm | SU-8, glass | [63] |
Micromachining (planarization, photolithography and plasma bonding) | CMOS chip | 1 | No | 0 | SU-8, PDMS | [65] |
Micromachining (photolithography and wet etching) | IC and flexible PCB | n.d. | Yes (PDMS) | 120 µm | glass | [77] |
Micromachining (photolithography and thermal bonding) | CMOS chip | 1 | No | 0 | JSR, glass | [84] |
Micromachining (milling engrave and adhesive bonding) | CMOS chip and PCB | 2 | No | 0 | PMMA | [75] |
Laser Engraving | CMOS chip | 3 | No | n.d. | Paper | [43] |
Laser Engraving (planarization, laser engrave) | FET chip | n.d. | Yes (photoresist) | 1.8 µm | PMMA | [66] |
Direct writing | CMOS chip | 1 | No | 0 | Epoxy | [72] |
Liquid Phase Dispersion | CMOS chip | 1 | No | 0 | 2D-fluid composites | [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annese, V.F.; Hu, C. Integrating Microfluidics and Electronics in Point-of-Care Diagnostics: Current and Future Challenges. Micromachines 2022, 13, 1923. https://doi.org/10.3390/mi13111923
Annese VF, Hu C. Integrating Microfluidics and Electronics in Point-of-Care Diagnostics: Current and Future Challenges. Micromachines. 2022; 13(11):1923. https://doi.org/10.3390/mi13111923
Chicago/Turabian StyleAnnese, Valerio Francesco, and Chunxiao Hu. 2022. "Integrating Microfluidics and Electronics in Point-of-Care Diagnostics: Current and Future Challenges" Micromachines 13, no. 11: 1923. https://doi.org/10.3390/mi13111923
APA StyleAnnese, V. F., & Hu, C. (2022). Integrating Microfluidics and Electronics in Point-of-Care Diagnostics: Current and Future Challenges. Micromachines, 13(11), 1923. https://doi.org/10.3390/mi13111923