Adaptive Fiber-Ring Lasers Based on Isopropanol Filled Microfiber Coupler for High-Sensitivity Temperature Sensing
Abstract
1. Introduction
2. Sensor Setup and Principle
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhuo, L.; Tang, J.; Zhu, W.; Zheng, H.; Guan, H.; Lu, H.; Chen, Y.; Luo, Y.; Zhang, J.; Zhong, Y.; et al. Side Polished Fiber: A Versatile Platform for Compact Fiber Devices and Sensors. Photonic Sens. 2022, 13, 230120. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O.M.; Iati, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter. 2017, 29, 203002. [Google Scholar] [CrossRef] [PubMed]
- Mihailov, S.J. Fiber Bragg grating sensors for harsh environments. Sensors 2012, 12, 1898–1918. [Google Scholar] [CrossRef] [PubMed]
- Majumder, M.; Gangopadhyay, T.K.; Chakraborty, A.K.; Dasgupta, K.; Bhattacharya, D.K. Fibre Bragg gratings in structural health monitoring—Present status and applications. Sens. Actuators A Phys. 2008, 147, 150–164. [Google Scholar] [CrossRef]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef]
- Persano, L.; Dagdeviren, C.; Su, Y.; Zhang, Y.; Girardo, S.; Pisignano, D.; Huang, Y.; Rogers, J.A. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 2013, 4, 1633. [Google Scholar] [CrossRef]
- Liu, X.; Qu, C.; Zhou, S.; Cao, W.; Xu, M.; Liu, Y. Simple and stable gas–liquid two-phase optical fiber sensor for acetone based on cholesteric liquid crystal. Opt. Commun. 2023, 526, 128890. [Google Scholar] [CrossRef]
- Jaworski, P.; Krzempek, K.; Bojęś, P.; Wu, D.; Yu, F. Mid-IR antiresonant hollow-core fiber based chirped laser dispersion spectroscopy of ethane with parts per trillion sensitivity. Opt. Laser Technol. 2022, 156, 108539. [Google Scholar] [CrossRef]
- Fu, X.; Huang, Z.; Li, Q.; Cao, X.; Wang, Y.; Fu, G.; Jin, W.; Bi, W. A cascaded triple waist-enlarged taper few-mode fiber temperature sensor with beaded structure. Opt. Laser Technol. 2022, 156, 108621. [Google Scholar] [CrossRef]
- Su, Y.D.; Preger, Y.; Burroughs, H.; Sun, C.; Ohodnicki, P.R. Fiber Optic Sensing Technologies for Battery Management Systems and Energy Storage Applications. Sensors 2021, 21, 1397. [Google Scholar] [CrossRef]
- Lin, W.; Liu, Y.; Shao, L.; Vai, M.I. A Fiber Ring Laser Sensor with a Side Polished Evanescent Enhanced Fiber for Highly Sensitive Temperature Measurement. Micromachines 2021, 12, 568. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Xiao, D.; Lin, W.; Chen, Y.; Wang, G.; Hu, J.; Liu, S.; Yu, F.; Xu, W.; Yang, X.; et al. Sensitivity Enhanced Refractive Index Sensor With In-Line Fiber Mach-Zehnder Interferometer Based on Double-Peanut and Er-Doped Fiber Taper Structure. J. Lightwave Technol. 2022, 40, 245–251. [Google Scholar] [CrossRef]
- Lin, W.; Zhao, F.; Shao, L.-Y.; Vai, M.I.; Shum, P.P.; Sun, S. Temperature Sensor Based on Er-Doped Cascaded-Peanut Taper Structure In-Line Interferometer in Fiber Ring Laser. IEEE Sens. J. 2021, 21, 21594–21599. [Google Scholar] [CrossRef]
- Zhang, G.; Ge, Q.; Wang, H.; Wu, X.; Yu, B. High precision temperature and strain discrimination using TCF–TPMF fiber structure based Sagnac interferometer. Opt. Commun. 2022, 522, 128634. [Google Scholar] [CrossRef]
- Gillespie, D.I.; Hamilton, A.W.; Atkinson, R.C.; Bellekens, X.; Michie, C.; Andonovic, I.; Tachtatzis, C. Composite Laminate Delamination Detection Using Transient Thermal Conduction Profiles and Machine Learning Based Data Analysis. Sensors 2020, 20, 7227. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Qi, B.; Zhang, F.; Zhong, L.; Xu, O.; Qin, Y. Hybrid fiber interferometer sensor for simultaneous measurement of strain and temperature with refractive index insensitivity. Opt. Commun. 2022, 522, 128637. [Google Scholar] [CrossRef]
- Yuan, W.; Zhao, Q.; Li, L.; Wang, Y.; Yu, C. Simultaneous measurement of temperature and curvature using ring-core fiber-based Mach-Zehnder interferometer. Opt. Express 2021, 29, 17915–17925. [Google Scholar] [CrossRef] [PubMed]
- Kanawade, R.; Kumar, A.; Pawar, D.; Late, D.; Mondal, S.; Sinha, R.K. Fiber optic Fabry–Perot interferometer sensor: An efficient and fast approach for ammonia gas sensing. J. Opt. Soc. Am. B 2019, 36, 684–689. [Google Scholar] [CrossRef]
- Sun, L.P.; Yuan, Z.; Huang, T.; Sun, Z.; Lin, W.; Huang, Y.; Xiao, P.; Yang, M.; Li, J.; Guan, B.O. Ultrasensitive sensing in air based on Sagnac interferometer working at group birefringence turning point. Opt. Express 2019, 27, 29501–29509. [Google Scholar] [CrossRef]
- Raju, S.D.V.S.J.; Hague, S.M.; Goud, B.K.; De, R.; Misal, J.S.; Rao, K.D. Fiber Bragg grating sensor for in situ substrate temperature measurement in a magnetron sputtering system. Phys. Scr. 2022, 97, 095505. [Google Scholar] [CrossRef]
- Wang, S.; Yang, H.; Liao, Y.; Wang, X.; Wang, J. High-Sensitivity Salinity and Temperature Sensing in Seawater Based on a Microfiber Directional Coupler. IEEE Photonics J. 2016, 8, 593586. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Wang, J.; Chen, Y. Highly sensitive temperature sensor based on an isopropanol-sealed optical microfiber coupler. Appl. Phys. Lett. 2018, 113, 111901. [Google Scholar] [CrossRef]
- Jiang, Y.; Fang, Z.; Du, Y.; Lewis, E.; Farrell, G.; Wang, P. Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids. Opt. Express 2018, 26, 356–366. [Google Scholar] [CrossRef]
- Fukushima, K.; Wada, A.; Tanaka, S.; Ito, F. EDF laser temperature sensor using double-pass cascaded-chirped long-period fiber grating in sigma-cavity configuration. Opt. Commun. 2022, 508, 127713. [Google Scholar] [CrossRef]
- Lin, W.; Shao, L.; Yibin, L.; Bandyopadhyay, S.; Yuhui, L.; Weijie, X.; Shuaiqi, L.; Jie, H.; Vai, M.I. Temperature Sensor Based on Fiber Ring Laser With Cascaded Fiber Optic Sagnac Interferometers. IEEE Photonics J. 2021, 13, 3065567. [Google Scholar] [CrossRef]
- Chen, J.H.; Deng, G.Q.; Yan, S.C.; Li, C.; Xi, K.; Xu, F.; Lu, Y.Q. Microfiber-coupler-assisted control of wavelength tuning for Q-switched fiber laser with few-layer molybdenum disulfide nanoplates. Opt. Lett. 2015, 40, 3576–3579. [Google Scholar] [CrossRef]
- Shaodong, H.; Zhijian, M.; Junbo, Y.; Min, Z.; Peiguang, Y.; Shuangchen, R. Mode-locked Er-doped fiber laser based on function-integrated fiber coupler. Opt. Lett. 2021, 46, 5934–5937. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hou, S.; Yu, Y.; Liu, W.; Yan, P.; Yang, J. Photonic device combined optical microfiber coupler with saturable-absorption materials and its application in mode-locked fiber laser. Opt. Express 2021, 29, 20526–20534. [Google Scholar] [CrossRef]
- Azlan Sulaiman, A.S.; Sulaiman Wadi Harun, S.W.H.; Harith Ahmad, H.A. Ring microfiber coupler erbium-doped fiber laser analysis. Chin. Opt. Lett. 2014, 12, 021403–21406. [Google Scholar] [CrossRef]
- Xiao, S.Y.; Wu, B.L.; Sun, C.R.; Wang, Z.X.; Jiang, Y.C. Strain and Temperature Discrimination Based on a Mach-Zehnder Interferometer with Cascaded Single Mode Fibers. Photonic Sens. 2023, 13, 230122. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, X.; Liu, Y.; Wang, Z. Photonic crystal fiber refractive index temperature sensor based on double spherical cascade. Optik 2022, 267, 169682. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Li, X.; Fan, X.; Chen, Q.; Wu, B.; Chen, H. A gold film coated dual-core photonic crystal fiber for refractive index and temperature sensing with high isolation. Opt. Fiber Technol. 2022, 72, 102975. [Google Scholar] [CrossRef]
- Lebarck Pizzaia, J.P.; Schmidt Castellani, C.E.; Gomes Leal-Junior, A. Highly sensitive temperature sensing based on a birrefringent fiber Sagnac loop. Opt. Fiber Technol. 2022, 72, 102949. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Hu, J.; Zhao, F.; Sun, S.; Liu, Y.; Liu, S.; Yu, F.; Mak, P.-U.; Pun, S.-H.; Shum, P.-P.; et al. Adaptive Fiber-Ring Lasers Based on Isopropanol Filled Microfiber Coupler for High-Sensitivity Temperature Sensing. Micromachines 2022, 13, 1697. https://doi.org/10.3390/mi13101697
Lin W, Hu J, Zhao F, Sun S, Liu Y, Liu S, Yu F, Mak P-U, Pun S-H, Shum P-P, et al. Adaptive Fiber-Ring Lasers Based on Isopropanol Filled Microfiber Coupler for High-Sensitivity Temperature Sensing. Micromachines. 2022; 13(10):1697. https://doi.org/10.3390/mi13101697
Chicago/Turabian StyleLin, Weihao, Jie Hu, Fang Zhao, Siming Sun, Yuhui Liu, Shuaiqi Liu, Feihong Yu, Peng-Un Mak, Sio-Hang Pun, Perry-Ping Shum, and et al. 2022. "Adaptive Fiber-Ring Lasers Based on Isopropanol Filled Microfiber Coupler for High-Sensitivity Temperature Sensing" Micromachines 13, no. 10: 1697. https://doi.org/10.3390/mi13101697
APA StyleLin, W., Hu, J., Zhao, F., Sun, S., Liu, Y., Liu, S., Yu, F., Mak, P.-U., Pun, S.-H., Shum, P.-P., Vai, M.-I., & Shao, L. (2022). Adaptive Fiber-Ring Lasers Based on Isopropanol Filled Microfiber Coupler for High-Sensitivity Temperature Sensing. Micromachines, 13(10), 1697. https://doi.org/10.3390/mi13101697