A MEMS Fabrication Process with Thermal-Oxide Releasing Barriers and Polysilicon Sacrificial Layers for AlN Lamb-Wave Resonators to Achieve fs·Qm > 3.42 × 1012
Abstract
:1. Introduction
2. Device Design
3. Fabrication Process and Results
4. Measurement and Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lannacci, J. Internet of things (IoT); internet of everything (IoE); tactile internet; 5G-A (not so evanescent) unifying vision empowered by EH-MEMS (energy harvesting MEMS) and RF-MEMS (radio frequency MEMS). Sens. Actuators A Phys. 2018, 272, 187–198. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, N.; Chua, G.L.; Sun, C.L.; Singh, N.; Gu, Y.D. ScAlN-Based LCAT Mode Resonators Above 2 GHz With High FOM and Reduced Fabrication Complexity. IEEE Electron Device Lett. 2017, 38, 1481–1484. [Google Scholar] [CrossRef]
- Agostini, M.; Cecchini, M. Ultra-high-frequency (UHF) surface-acoustic-wave (SAW) microfluidics and biosensors. Nanotechnology 2021, 32, 3112001. [Google Scholar] [CrossRef] [PubMed]
- Yim, M.; Jeon, B.; Yoon, G. Feasibility Study of Small-sized FBAR-based Bandpass Filter Covering Digital Dividend Band for LTE Services. J. Semicond. Technol. Sci. 2020, 20, 479–484. [Google Scholar] [CrossRef]
- He, X.L.; Guo, H.W.; Chen, J.K.; Wang, W.B.; Xuan, W.P.; Xu, Y.; Luo, J.K. Bendable ZnO thin film surface acoustic wave devices on polyethylene terephthalate substrate. Appl. Phys. Lett. 2014, 104, 213504. [Google Scholar] [CrossRef] [Green Version]
- Yantchev, V.; Katardjiev, I. Thin film Lamb wave resonators in frequency control and sensing applications: A review. J. Micromechanics Microengineering 2013, 23, 403001. [Google Scholar] [CrossRef]
- Zou, J.; Gao, A.; Pisano, A.P. Ultralow Acoustic Loss Micromachined Butterfly Lamb Wave Resonators on AlN Plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, M.W.U.; Fedeli, P.; Tu, C.; Frangi, A.; Lee, J.E.-Y. Numerical analysis of anchor loss and thermoelastic damping in piezoelectric AlN-on-Si Lamb wave resonators. J. Micromechanics Microengineering 2019, 29, 105013. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, Y.; Chua, G.L.; Chen, B.T.; Merugu, S.; Singh, N. Over 10% of k2eff Demonstrated by 2GHz Spurious Mode Free Sc0.12Al0.88N Laterally Coupled Alternating Thickness (LCAT) Mode Resonators. IEEE Electron Device Lett. 2019, 40, 957–960. [Google Scholar] [CrossRef]
- Zou, J.; Lin, C.M.; Gao, A.M.; Pisano, A.P. The Multi-Mode Resonance in AlN Lamb Wave Resonators. J. Microelectromech. Syst. 2018, 27, 973–984. [Google Scholar] [CrossRef]
- Rinaldi, M.; Zuniga, C.; Zuo, C.J.; Piazza, G. Super-High-Frequency Two-Port AlN Contour-Mode Resonators for RF Applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Qian, Z.Y.; Rinaldi, M. Low cost thin film encapsulation for AlN resonators. In Proceedings of the 31st IEEE International Conference on Micro Electro Mechanical Systems, Belfast, Ireland, 21–25 January 2018; pp. 1024–1027. [Google Scholar]
- Wang, N.; Zhu, Y.; Sun, C.L.; Yu, M.B.; Chua, G.L.; Merugu, S.; Singh, N.; Gu, Y.D. High-band AlN Based RF-MEMS Resonator for TSV integration. In Proceedings of the IEEE 67th Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, 30 May–2 June 2017; pp. 1868–1873. [Google Scholar]
- Zhu, Y.; Wang, N.; Sun, C.L.; Mergu, S.; Singh, N.; Gu, Y.D. A High Coupling Coefficient 2.3-GHz AlN Resonator for High Band LTE Filtering Application. IEEE Electron Device Lett. 2016, 37, 1344–1346. [Google Scholar] [CrossRef]
- Sun, C.L.; Soon, B.W.; Zhu, Y.; Wang, N.; Loke, S.P.H.; Mu, S.J.; Tao, J.F.; Gu, A.Y. Methods for improving electromechanical coupling coefficient in two dimensional electric field excited AlN Lamb wave resonators. Appl. Phys. Lett. 2015, 106, 253502. [Google Scholar] [CrossRef]
- Lozzi, A.; De Pastina, A.; Villanueva, L.G.; Yen, E.T.T. Release area confinement in Contour Mode Resonators. In Proceedings of the IEEE International Ultrasonics Symposium, Washington, DC, USA, 6–9 September 2017. [Google Scholar]
- Piazza, G.; Felmetsger, V.; Muralt, P.; Olsson, R.H.; Ruby, R. Piezoelectric aluminum nitride thin films for microelectromechanical systems. MRS Bull. 2012, 37, 1051–1061. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, M.; Zuniga, C.; Piazza, G. 5-10 GHz AlN Contour-mode Nanoelectromechanical Resonators. In Proceedings of the 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 25–29 January 2009; pp. 916–919. [Google Scholar]
- Liu, J.Y.; Zhou, J.; Zhou, Y.; Gao, C.; Xie, Y.; Sun, C.L. AlN Checker-mode Resonators with Routing Structures. In Proceedings of the IEEE International Ultrasonics Symposium, Glasgow, UK, 6–9 October 2019; pp. 1727–1730. [Google Scholar]
- Zuo, C.J.; Sinha, N.; Van der Spiegel, J.; Piazza, G. Multifrequency Pierce Oscillators Based on Piezoelectric AlN Contour-Mode MEMS Technology. J. Microelectromech. Syst. 2010, 19, 570–580. [Google Scholar]
- Colombo, L.; Kochhar, A.; Vidal-Alvarez, G.; Piazza, G. High-Figure-of-Merit X-Cut Lithium Niobate MEMS Resonators Operating Around 50 MHz for Large Passive Voltage Amplification in Radio Frequency Applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 1392–1402. [Google Scholar] [CrossRef] [PubMed]
- Esteves, G.; Young, T.R.; Tang, Z.C.; Yen, S.; Bauer, T.M.; Henry, M.D.; Olsson, R.H. Al0.68Sc0.32N Lamb wave resonators with electromechanical coupling coefficients near 10.28%. Appl. Phys. Lett. 2021, 118, 171902. [Google Scholar] [CrossRef]
- Segovia-Fernandez, J.; Cremonesi, M.; Cassella, C.; Frangi, A.; Piazza, G. Anchor losses in AlN contour mode resonators. J. Microelectromech. Syst. 2015, 24, 265–275. [Google Scholar] [CrossRef]
- Zou, J.; Lin, C.M.; Lam, C.S.; Pisano, A.P. Transducer design for AlN Lamb wave resonators. J. Appl. Phys. 2017, 121, 154502. [Google Scholar] [CrossRef]
- Gao, A.M.; Winterkorn, M.; Yang, Y.S.; Lu, R.C.; Provine, J.; Gong, S.B. Boosting Qs of AlN Resonators by Redefining Acoustic Boundaries. In Proceedings of the 32nd IEEE International Conference on Micro Electro Mechanical Systems, Seoul, Korea, 27–31 January 2019; pp. 883–886. [Google Scholar]
- Zhou, J.; Gao, A.M.; Pisano, A.P. Spectrum-clean S-1 AlN Lamb wave resonator with damped edge reflectors. Appl. Phys. Lett. 2020, 116, 023505. [Google Scholar] [CrossRef]
- Schaffer, Z.A.; Piazza, G.; Mishin, S.; Oshmyansky, Y. Super High Frequency Simple Process Flow Cross-Sectional Lame Mode Resonators in 20% Scandium-Doped Aluminum Nitride. In Proceedings of the 33rd IEEE International Conference on Micro Electro Mechanical Systems, Vancouver, BC, Canada, 18–22 January 2020; pp. 1281–1284. [Google Scholar]
Top IDT Period (p) | 12 μm | 2 μm |
---|---|---|
IDT numbers (n) | 6 | 34 |
Bottom electrode width (WMo) | 72 μm | 68 μm |
AlN plate width (WAlN) | 96 μm | 72 μm |
IDT width (WIDT) | 8.5 μm | 1 μm |
Effective electrode length (Le) | 192 μm | 60 μm |
Finger-to-bus gap (g) | 6 μm | 9 μm |
Bus width (Wbus) | 7 μm | 6 μm |
IDT Period | 12 μm | 2 μm |
---|---|---|
R0 (Ω) | 287.25 | 99.21 |
C0 (fF) | 432.1 | 188.08 |
Cload (fF) | 9.23 | 1.18 |
Rm (Ω) | 31.95 | 45.43 |
Cm (fF) | 2.82 | 1.03 |
Lm (μH) | 55.5 | 5.58 |
Re (Ω) | 4.92 | 5.73 |
Rp (Ω) | 1.24 | 2.98 |
AlN | Al | Au | |
---|---|---|---|
Mass density (kg/m3) | 3260 | 2700 | 19,300 |
Acoustic impedance (C/m2) | 1061 | 436 | 1162 |
Electrical Properties | Ref. [25] | Ref. [10] | Ref. [26] | Ref. [27] | This Work | This Work |
---|---|---|---|---|---|---|
fs (MHz) | 243 | 865 | 1380 | 2740 | 402.1 | 2097 |
Qs | 4050 | 2968 | 2181 | 540 | 4382 | 1368 |
k2eff | 1.75% | 0.27% | 0.71% | 5.64% | 1.0% | 0.82% |
fs·Qs | 9.84 × 1011 | 2.57 × 1012 | 3.01 × 1012 | 1.48 × 1012 | 1.53 × 1012 | 2.86 × 1012 |
FOM | 7.03 | 8.01 | 15.49 | 30.5 | 43.82 | 11.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhu, Z.; Sun, H.; Lv, S.; Wang, X.; Song, C. A MEMS Fabrication Process with Thermal-Oxide Releasing Barriers and Polysilicon Sacrificial Layers for AlN Lamb-Wave Resonators to Achieve fs·Qm > 3.42 × 1012. Micromachines 2021, 12, 892. https://doi.org/10.3390/mi12080892
Zhao J, Zhu Z, Sun H, Lv S, Wang X, Song C. A MEMS Fabrication Process with Thermal-Oxide Releasing Barriers and Polysilicon Sacrificial Layers for AlN Lamb-Wave Resonators to Achieve fs·Qm > 3.42 × 1012. Micromachines. 2021; 12(8):892. https://doi.org/10.3390/mi12080892
Chicago/Turabian StyleZhao, Jicong, Zheng Zhu, Haiyan Sun, Shitao Lv, Xingyu Wang, and Chenguang Song. 2021. "A MEMS Fabrication Process with Thermal-Oxide Releasing Barriers and Polysilicon Sacrificial Layers for AlN Lamb-Wave Resonators to Achieve fs·Qm > 3.42 × 1012" Micromachines 12, no. 8: 892. https://doi.org/10.3390/mi12080892
APA StyleZhao, J., Zhu, Z., Sun, H., Lv, S., Wang, X., & Song, C. (2021). A MEMS Fabrication Process with Thermal-Oxide Releasing Barriers and Polysilicon Sacrificial Layers for AlN Lamb-Wave Resonators to Achieve fs·Qm > 3.42 × 1012. Micromachines, 12(8), 892. https://doi.org/10.3390/mi12080892