Porous PLAs with Controllable Density by FDM 3D Printing and Chemical Foaming Agent
Abstract
:1. Introduction
2. Concepts and Methodology
3. Material Testing and Results
4. Conclusions
- The filament is used directly in the manufacturing process, with no additive mixing during printing, which allows for a higher convenience in terms of usability;
- The printed results do not contain foreign materials, unlike syntactic foams, which may increase recyclability;
- The present method can improve the mechanical performance of previously researched 3D-printed foams;
- The results present a higher strength and stiffness at higher densities compared with previously researched 3D-printed foams;
- The material presents a high spectrum of properties, varying according to the printed temperature;
- This wide range of properties could be leveraged in functionally graded prints for lightweight sandwich structures, presenting a potential alternative to ribs and spars that is easier to manufacture and faster to prototype.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petch, M. 80 Additive Manufacturing Experts Predict The 3D Printing Trends to Watch In 2020. 15 January 2020. Available online: https://3dprintingindustry.com/news/80-additive-manufacturing-experts-predict-the-3d-printing-trends-to-watch-in-2020-167177/ (accessed on 2 January 2021).
- Baumers, M.; Dickens, P.; Tuck, C.; Hague, R. The cost of additive manufacturing: Machine productivity, economies of scale and technology-push. Technol. Forecast. Soc. Chang. 2016, 102, 193–201. [Google Scholar] [CrossRef]
- Standau, T.; Zhao, C.; Castellón, S.M.; Bonten, C.; Altstädt, V. Chemical Modification and Foam Processing of Polylactide (PLA). Polymers 2019, 11, 306. [Google Scholar] [CrossRef] [Green Version]
- Berlin, D.R. Stressed-Skin Structures for Aircraft. In SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 1936. [Google Scholar]
- Türk, D.-A.; Kussmaul, R.; Zogg, M.; Klahn, C.; Leutenecker-Twelsie, B.; Meboldt, M. Composites Part Production with Additive Manufacturing Technologies. Procedia CIRP 2017, 66, 306–311. [Google Scholar] [CrossRef]
- Sousa, A. An Integrated Innovation approach to UAV Development. 2020. Available online: https://www.researchgate.net/publication/342425603_An_Integrated_Innovation_approach_to_UAV_Development (accessed on 10 May 2021).
- Vyavahare, S.; Teraiya, S.; Panghal, D.; Kumar, S. Fused deposition modelling: A review. Rapid Prototyp. J. 2020, 26, 176–201. [Google Scholar] [CrossRef]
- Kumar, M.A.; Khan, M.; Mishra, S. Effect of machine parameters on strength and hardness of FDM printed carbon fiber reinforced PETG thermoplastics. Mater. Today Proceeding 2020, 27, 975–983. [Google Scholar] [CrossRef]
- Yoo, C.; Shin, B.; Kang, B.; Gwak, C.; Park, C.; Ma, Y.; Hong, S. A Study on a New 3D Porous Polymer Printing Based on EPP Beads Containing CO2 Gas. Procedia Eng. 2017, 184, 10–15. [Google Scholar] [CrossRef]
- Jung, D.W.; Jeong, J.H.; Park, C.B.; Shin, B.S. UV Laser Aided Micro-Cell Opening of EPP Foam for Improvement of Sound Absorption. Int. J. Precis. Eng. Manuf. 2013, 14, 1127–1131. [Google Scholar] [CrossRef]
- Park, C.; Shin, B.-S.; Kang, M.-S.; Ma, Y.-W.; Oh, J.-Y.; Hong, S.-M. Experimental Study on Micro-porous Patterning Using UV Pulse Laser Hybrid Process with Chemical Foaming Agent. Int. J. Precis. Eng. Manuf. 2015, 16, 1385–1390. [Google Scholar] [CrossRef]
- Ali, M.; Rubel, R.; Yusuf, S. A review on syntactic foams processing, preparation and application. In Proceedings of the International Conference on Mechanical Engineeringand Renewable Energy 2019(ICMERE2019), Chittagong, Bangladesh, 11–13 December 2019. [Google Scholar]
- Bharath, H.S.; Bonthu, D.; Prabhakar, P.; Doddamani, M. 3D Printed Lightweight Composite Foams. ACS Omega 2020, 5, 22536–22550. [Google Scholar]
- Jayavardhan, M.; Kumar, B.B.; Doddamani, M.; Singh, A.K.; Zeltmann, S.E.; Gupta, N. Development of glass microballoon/HDPE syntactic foams by compression molding. Compos. Part B Eng. 2017, 130, 119–131. [Google Scholar] [CrossRef]
- Kumar, B.B.; Doddamani, M.; Zeltmann, S.; Gupta, N.; Ramesh, M.R.; Ramakrishna, S. Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine. Mater. Des. 2015, 92, 414–423. [Google Scholar] [CrossRef] [Green Version]
- Jayavardhan, M.; Doddamani, M. Quasi-static compressive response of compression molded glass microballoon/HDPE syntactic foam. Compos. Part B Eng. 2018, 149, 165–177. [Google Scholar] [CrossRef]
- Singh, A.K.; Patil, B.; Hoffmann, N.; Saltonstall, B.; Doddamani, M.; Gupta, N. Additive Manufacturing of Syntactic Foams: Part 1: Development, Properties, and Recycling Potential of Filaments. JOM 2018, 70, 202–309. [Google Scholar] [CrossRef]
- Gupta, N.; Ye, R.; Porfiri, M. Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams. Compos. Part B Eng. 2010, 41, 236–245. [Google Scholar] [CrossRef]
- Lawrence, E.; Pyrz, R. Viscoelastic Properties of Polyethylene Syntactic foam with Polymer Microballoons. Polym. Polym. Compos. 2001, 9, 227–237. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, P.; Li, W. Fabrication of functionally graded porous polymer via supercritical CO2 foaming. Compos. Part B Eng. 2011, 42, 318–325. [Google Scholar] [CrossRef]
- Sauceau, M.; Fages, J.; Common, A.; Nikitine, C.; Rodier, E. New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Prog. Polym. Sci. 2011, 36, 749–766. [Google Scholar] [CrossRef] [Green Version]
- Reverchon, E.; Cardea, S. Production of controlled polymeric foams by supercritical CO2. J. Supercrit. Fluids 2007, 40, 144–152. [Google Scholar] [CrossRef]
- Xu, Z.-M.; Jiang, X.-L.; Liu, T.; Hu, G.-H.; Zhao, L.; Zhu, Z.-N.; Yuan, W.-K. Foaming of polypropylene with supercritical carbon dioxide. J. Supercrit. Fluids 2007, 41, 299–310. [Google Scholar] [CrossRef]
- Choi, W.J.; Hwang, K.S.; Kwon, H.J.; Lee, C.; Kim, C.H.; Kim, T.H.; Heo, S.W.; Kim, J.-H.; Lee, J.-Y. Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application. Mater. Sci. Eng. C 2020, 110, 110693. [Google Scholar] [CrossRef]
- Clément, X.; Masterbatches, C. Lightweighting Strategies with Chemical Foaming of Thermoplastic Parts in Automotive Applications Europe. 2015. Available online: https://www.polyvia.fr/sites/allize/files/2018-08/Lightweighting%20strategies%20with%20Chemical%20Foaming%20of%20thermoplastic%20parts%20in%20Automotive%20Applications.pdf (accessed on 13 June 2021).
- Schroeck, P. A New Introduction to Chemical Blowing Agents. 2017. Available online: https://www.eiseverywhere.com/docs/5555/166836 (accessed on 28 December 2020).
- Wang, S.; Ma, Y.; Deng, Z.; Zhang, S.; Cai, J. Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polym. Test. 2020, 86, 106483. [Google Scholar] [CrossRef]
- Haryńska, A.; Carayon, I.; Kosmela, P.; Szeliski, K.; Łapiński, M.; Pokrywczyńska, M.; Kucińska-Lipka, J.; Janik, H. A comprehensive evaluation of flexible FDM/FFF 3D printing filament as a potential material in medical application. Eur. Polym. J. 2020, 138, 109958. [Google Scholar] [CrossRef]
- Subash, A.; Kandasubramanian, B. 4D printing of shape memory polymers. Eur. Polym. J. 2020, 134, 109771. [Google Scholar] [CrossRef]
Parameters P(T) | ||||
---|---|---|---|---|
Flow rate (%) | 95 | 35 | 0.13 | 0.1315 |
Density (g/cm3) | 1.07 | 0.44 | 0.15 | 0.1510 |
Young modulus (GPa) | 1.9 | 0.42 | 0.15 | 0.1535 |
Ultimate strength (MPa) | 25 | 6.3 | 0.18 | 0.1839 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damanpack, A.R.; Sousa, A.; Bodaghi, M. Porous PLAs with Controllable Density by FDM 3D Printing and Chemical Foaming Agent. Micromachines 2021, 12, 866. https://doi.org/10.3390/mi12080866
Damanpack AR, Sousa A, Bodaghi M. Porous PLAs with Controllable Density by FDM 3D Printing and Chemical Foaming Agent. Micromachines. 2021; 12(8):866. https://doi.org/10.3390/mi12080866
Chicago/Turabian StyleDamanpack, A. R., André Sousa, and M. Bodaghi. 2021. "Porous PLAs with Controllable Density by FDM 3D Printing and Chemical Foaming Agent" Micromachines 12, no. 8: 866. https://doi.org/10.3390/mi12080866
APA StyleDamanpack, A. R., Sousa, A., & Bodaghi, M. (2021). Porous PLAs with Controllable Density by FDM 3D Printing and Chemical Foaming Agent. Micromachines, 12(8), 866. https://doi.org/10.3390/mi12080866