Emerging Topochemical Strategies for Designing Two-Dimensional Energy Materials
Abstract
:1. Introduction
2. The Synthesis of 2D Materials by Topochemical Deintercalation and Their Energy-Related Applications
3. The Synthesis of 2D Materials by Topochemical Transformation and Their Energy-Related Applications
3.1. Two-Dimensional TMOs
3.2. Two-Dimensional TMDs
3.3. Two-Dimensional TMXs (X = Nitrides, Carbides, Phosphides)
3.3.1. Nitrogen Substitution
3.3.2. Carbon Substitution
3.3.3. Phosphorus Substitution
4. Conclusions and Perspectives
Funding
Conflicts of Interest
References
- Codina Gironès, V.; Moret, S.; Peduzzi, E.; Nasato, M.; Maréchal, F. Optimal use of biomass in large-scale energy systems: Insights for energy policy. Energy 2017, 137, 789–797. [Google Scholar] [CrossRef]
- Diau, E.W.-G. Next-Generation Solar Cells and Conversion of Solar Energy. ACS Energy Lett. 2017, 2, 334–335. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.S.; Rahman, K.S.; Selvanathan, V.; Nuthammachot, N.; Suklueng, M.; Mostafaeipour, A.; Habib, A.; Akhtaruzzaman, M.; Amin, N.; Techato, K. Current trends and prospects of tidal energy technology. Environ. Dev. Sustain. 2020, 23, 1–16. [Google Scholar] [CrossRef]
- Kruszelnicka, W. A New Model for Environmental Assessment of the Comminution Process in the Chain of Biomass Energy Processing. Energies 2020, 13, 330. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, Z.; Si, Y.; Qian, P.; Wu, H.; Cui, L.; Zhang, D. A review of tidal current energy resource assessment in China. Renew. Sustain. Energy Rev. 2021, 145, 111012. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. A global assessment of extreme wind speeds for wind energy applications. Nat. Energy 2021, 6, 268–276. [Google Scholar] [CrossRef]
- Dou, Q.; Park, H.S. Perspective on High-Energy Carbon-Based Supercapacitors. Energy Environ. Mater. 2020, 3, 286–305. [Google Scholar] [CrossRef]
- Rahmany, S.; Etgar, L. Semitransparent Perovskite Solar Cells. ACS Energy Lett. 2020, 5, 1519–1531. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.; Xia, Q.; Hu, Z.; Zhu, Y.; Yan, S.; Ge, C.; Zhang, Q.; Wang, X.; Shang, X.; et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 2021, 20, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, H.; Xiao, X. Intercalation in Two-Dimensional Transition Metal Carbides and Nitrides (MXenes) toward Electrochemical Capacitor and Beyond. Energy Environ. Mater. 2020, 3, 306–322. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Q.; Qin, G.; Xiao, Y.; Duan, J. Unveiling a bimetallic FeCo-coupled MoS2 composite for enhanced energy storage. Nanoscale 2020, 12, 10532–10542. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.A.M.; Wang, Y.; Bowen, C.R.; Yang, Y. 2D Nanomaterials for Effective Energy Scavenging. Nano Micro Lett. 2021, 13, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; An, X.; Zhang, S.; Li, Z.; Zhang, J.; Wu, W.; Wu, M. Physical vapor deposition (PVD): A method to fabricate modified g-C3N4 sheets. New J. Chem. 2019, 43, 6683–6687. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Wang, J.-b.; Ren, Z.; Hou, Y.; Yan, X.-l.; Liu, P.-z.; Zhang, H.; Zhang, H.-x.; Guo, J.-j. A review of graphene synthesisatlow temperatures by CVD methods. New Carbon Mater. 2020, 35, 193–208. [Google Scholar] [CrossRef]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Wang, H.; Urbankowski, P.; Gogotsi, Y. Topochemical synthesis of 2D materials. Chem. Soc. Rev. 2018, 47, 8744–8765. [Google Scholar] [CrossRef]
- Eklund, P.; Beckers, M.; Jansson, U.; Högberg, H.; Hultman, L. The M+1AX phases: Materials science and thin-film processing. Thin Solid Films 2010, 518, 1851–1878. [Google Scholar] [CrossRef] [Green Version]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [Green Version]
- Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M.C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501. [Google Scholar] [CrossRef] [PubMed]
- Dávila, M.E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002. [Google Scholar] [CrossRef]
- Prech, J.; Pizarro, P.; Serrano, D.P.; Cejka, J. From 3D to 2D zeolite catalytic materials. Chem. Soc. Rev. 2018, 47, 8263–8306. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Liao, T.; Dou, Y.; Hwang, S.M.; Park, M.S.; Jiang, L.; Kim, J.H.; Dou, S.X. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 2014, 5, 3813. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Song, H.; Lin, S.; Zhou, Y.; Zhan, X.; Hu, Z.; Zhang, Q.; Sun, J.; Yang, B.; Li, T.; et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 2016, 7, 11296. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Yu, H.; Jin, H.; Wu, M.; Fang, Y.; Sun, J.; Hu, Z.; Li, T.; Wu, J.; Huang, L.; et al. Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides. ACS Nano 2017, 11, 2180–2186. [Google Scholar] [CrossRef]
- Urbankowski, P.; Anasori, B.; Hantanasirisakul, K.; Yang, L.; Zhang, L.; Haines, B.; May, S.J.; Billinge, S.J.L.; Gogotsi, Y. 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale 2017, 9, 17722–17730. [Google Scholar] [CrossRef]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Bak, S.M.; Qiao, R.M.; Yang, W.L.; Lee, S.; Yu, X.Q.; Anasori, B.; Lee, H.; Gogotsi, Y.; Yang, X.Q. Na-Ion Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide. Adv. Energy Mater. 2017, 7, 1700959. [Google Scholar] [CrossRef] [Green Version]
- Lukatskaya, M.R.; Mashtalir, O.; Ren, C.E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P.L.; Naguib, M.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science 2013, 341, 1502–1505. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.M.; Zhang, H.; Hu, T.; Fan, B.B.; Wang, X.H.; Li, Z.J. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects. Chem. Soc. Rev. 2020, 49, 6666–6693. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.B.; Shao, H.; Lin, Z.F.; Lu, J.; Liu, L.Y.; Duployer, B.; Persson, P.O.A.; Eklund, P.; Hultman, L.; Li, M.; et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.; Sturala, J.; Vyskocil, J.; Lazar, P.; Martincova, J.; Plutnar, J.; Pumera, M. Two-Dimensional Functionalized Germananes as Photoelectrocatalysts. ACS Nano 2021. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wang, D.; Zheng, Z. Textile-Based Electrochemical Energy Storage Devices. Adv. Energy Mater. 2016, 6, 1600783. [Google Scholar] [CrossRef]
- Hanlon, D.; Backes, C.; Higgins, T.M.; Hughes, M.; O’Neill, A.; King, P.; McEvoy, N.; Duesberg, G.S.; Sanchez, B.M.; Pettersson, H.; et al. Production of Molybdenum Trioxide Nanosheets by Liquid Exfoliation and Their Application in High-Performance Supercapacitors. Chem. Mater. 2014, 26, 1751–1763. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, K.; Sun, H.; Yin, S. One-Step Synthesis of Single-Layer MnO2 Nanosheets with Multi-Role Sodium Dodecyl Sulfate for High-Performance Pseudocapacitors. Small 2015, 11, 2182–2191. [Google Scholar] [CrossRef]
- Xiao, X.; Song, H.B.; Lin, S.Z.; Zhou, Y.; Zhan, X.J.; Hu, Z.M.; Zhang, Q.; Sun, J.Y.; Yang, B.; Li, T.Q.; et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.W.; Cheng, C.; Wang, Y.F.; Qiu, L.; Li, D. Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage. Science 2013, 341, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Brezesinski, T.; Wang, J.; Tolbert, S.H.; Dunn, B. Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151. [Google Scholar] [CrossRef]
- Du, Z.G.; Yang, S.B.; Li, S.M.; Lou, J.; Zhang, S.Q.; Wang, S.; Li, B.; Gong, Y.J.; Song, L.; Zou, X.L.; et al. Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature 2020, 577, 492–496. [Google Scholar] [CrossRef]
- Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.B.; Eda, G.; Chhowalla, M. Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Lett. 2013, 13, 6222–6227. [Google Scholar] [CrossRef]
- Yu, H.; Yang, X.; Xiao, X.; Chen, M.; Zhang, Q.; Huang, L.; Wu, J.; Li, T.; Chen, S.; Song, L.; et al. Atmospheric-Pressure Synthesis of 2D Nitrogen-Rich Tungsten Nitride. Adv. Mater. 2018, 30, 1805655. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Urbankowski, P.; Hantanasirisakul, K.; Yang, Y.; Sasaki, S.; Yang, L.; Chen, C.; Wang, H.; Miao, L.; Tolbert, S.H.; et al. Scalable Synthesis of Ultrathin Mn3N2 Exhibiting Room-Temperature Antiferromagnetism. Adv. Funct. Mater. 2019, 29, 1809001. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, H.; Bao, W.Z.; Urbankowski, P.; Yang, L.; Yang, Y.; Maleski, K.; Cu, L.F.; Billinge, S.J.L.; Wang, G.X.; et al. Two-Dimensional Arrays of Transition Metal Nitride Nanocrystals. Adv. Mater. 2019, 31, 1902393. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.Y.; Liu, X.; Vasileff, A.; Jiao, Y.; Zhao, Y.Q.; Zheng, Y.; Qiao, S.Z. Single-Crystal Nitrogen-Rich Two-Dimensional Mo5N6 Nanosheets for Efficient and Stable Seawater Splitting. Acs Nano 2018, 12, 12761–12769. [Google Scholar] [CrossRef] [PubMed]
- Li, T.Q.; Jin, H.R.; Liang, Z.; Huang, L.; Lu, Y.C.; Yu, H.M.; Hu, Z.M.; Wu, J.B.; Xia, B.Y.; Feng, G.; et al. Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method. Nanoscale 2018, 10, 6844–6849. [Google Scholar] [CrossRef]
- Halim, J.; Kota, S.; Lukatskaya, M.R.; Naguib, M.; Zhao, M.Q.; Moon, E.J.; Pitock, J.; Nanda, J.; May, S.J.; Gogotsi, Y.; et al. Synthesis and Characterization of 2D Molybdenum Carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118–3127. [Google Scholar] [CrossRef]
- Gesing, T.M.; Jeitschko, W. The crystal structures of Zr3Al3C5, ScAl3C3, and UAl3C3 and their relation to the structures of U2Al3C4 and Al4C3. J. Solid State Chem. 1998, 140, 396–401. [Google Scholar] [CrossRef]
- Shao, W.Y.; Tebyetekerwa, M.; Marriam, I.; Li, W.L.; Wu, Y.Z.; Peng, S.J.; Ramakrishna, S.; Yang, S.Y.; Zhu, M.F. Polyster@MXene nanofibers-based yarn electrodes. J. Power Sour. 2018, 396, 683–690. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, Q.Z.; Soomro, R.A.; He, S.Y.; Sun, N.; Qiao, N.; Xu, B. In Situ Ice Template Approach to Fabricate 3D Flexible MXene Film-Based Electrode for High Performance Supercapacitors. Adv. Funct. Mater. 2020, 30, 2000922. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Luo, K.; Li, Y.B.; Chang, K.K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamysbayev, V.; Filatov, A.S.; Hu, H.C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R.F.; Talapin, D.V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983. [Google Scholar] [CrossRef] [PubMed]
- Osada, M.; Takanashi, G.; Li, B.-W.; Akatsuka, K.; Ebina, Y.; Ono, K.; Funakubo, H.; Takada, K.; Sasaki, T. Controlled Polarizability of One-Nanometer-Thick Oxide Nanosheets for Tailored, High-kappa Nanodielectrics. Adv. Funct. Mater. 2011, 21, 3482–3487. [Google Scholar] [CrossRef]
- Osada, M.; Sasaki, T. Exfoliated oxide nanosheets: New solution to nanoelectronics. J. Mater. Chem. 2009, 19, 2503–2511. [Google Scholar] [CrossRef]
- Zhu, J.; Bai, L.; Sun, Y.; Zhang, X.; Li, Q.; Cao, B.; Yan, W.; Xie, Y. Topochemical transformation route to atomically thick Co3O4 nanosheets realizing enhanced lithium storage performance. Nanoscale 2013, 5, 5241–5246. [Google Scholar] [CrossRef]
- Wang, C.; Zhai, W.; Wang, Y.; Yu, P.; Mao, L. MnO2 nanosheets based fluorescent sensing platform with organic dyes as a probe with excellent analytical properties. Analyst 2015, 140, 4021–4029. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Z.; Qi, L.; Lai, J.; Kitte, S.A.; Xu, G. Ultrasensitive Glutathione Detection Based on Lucigenin Cathodic Electrochemiluminescence in the Presence of MnO2 Nanosheets. Anal. Chem. 2016, 88, 7654–7659. [Google Scholar] [CrossRef]
- Pang, J.; Mendes, R.G.; Bachmatiuk, A.; Zhao, L.; Ta, H.Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M.H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133. [Google Scholar] [CrossRef]
- Kuykendall, T.; Pauzauskie, P.; Lee, S.K.; Zhang, Y.F.; Goldberger, J.; Yang, P.D. Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections. Nano Lett. 2003, 3, 1063–1066. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, S.; Hotehama, K.; Kawaji, H. Superconductivity at 25.5 K in electron-doped layered hafnium nitride. Nature 1998, 392, 580–582. [Google Scholar] [CrossRef]
- Kim, H.M.; Cho, Y.H.; Lee, H.; Kim, S.I.; Ryu, S.R.; Kim, D.Y.; Kang, T.W.; Chung, K.S. High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 2004, 4, 1059–1062. [Google Scholar] [CrossRef]
- Kuykendall, T.; Pauzauskie, P.J.; Zhang, Y.F.; Goldberger, J.; Sirbuly, D.; Denlinger, J.; Yang, P.D. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nat. Mater. 2004, 3, 524–528. [Google Scholar] [CrossRef]
- Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.Q.; Kota, S.; Walsh, P.L.; Zhao, M.Q.; Shenoy, V.B.; Barsoum, M.W.; Gogotsi, Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016, 8, 11385–11391. [Google Scholar] [CrossRef]
- Wang, S.M.; Yu, X.H.; Lin, Z.J.; Zhang, R.F.; He, D.W.; Qin, J.Q.; Zhu, J.L.; Han, J.; Wang, L.; Mao, H.K.; et al. Synthesis, Crystal Structure, and Elastic Properties of Novel Tungsten Nitrides. Chem. Mater. 2012, 24, 3023–3028. [Google Scholar] [CrossRef]
- Xiong, J.; Li, J.; Shi, J.W.; Zhang, X.L.; Suen, N.T.; Liu, Z.; Huang, Y.J.; Xu, G.X.; Cai, W.W.; Lei, X.R.; et al. In Situ Engineering of Double-Phase Interface in Mo/Mo2C Heteronanosheets for Boosted Hydrogen Evolution Reaction. Acs Energy Lett. 2018, 3, 341–348. [Google Scholar] [CrossRef]
- Hansen, M.H.; Stern, L.A.; Feng, L.G.; Rossmeisl, J.; Hu, X.L. Widely available active sites on Ni2P for electrochemical hydrogen evolution—Insights from first principles calculations. Phys. Chem. Chem. Phys. 2015, 17, 10823–10829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calle-Vallejo, F.; Tymoczko, J.; Colic, V.; Vu, Q.H.; Pohl, M.D.; Morgenstern, K.; Loffreda, D.; Sautet, P.; Schuhmann, W.; Bandarenka, A.S. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 2015, 350, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.C.; Liu, Q.; Asiri, A.M.; Sun, X.P. Closely Interconnected Network of Molybdenum Phosphide Nanoparticles: A Highly Efficient Electrocatalyst for Generating Hydrogen from Water. Adv. Mater. 2014, 26, 5702. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhao, S.S.; Bachmatiuk, A.; Rummeli, M.H.; Gorantla, S.; Zeng, M.Q.; Fu, L. 2D Intrinsic Ferromagnetic MnP Single Crystals. Small 2020, 16, 2001484. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, Y.; Yu, Y.F.; Zhang, J.F.; Zhuo, S.F.; Zhang, B. Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: A high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chem. Sci. 2017, 8, 2769–2775. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Tu, J.P.; Xiong, Q.Q.; Zhang, H.; Gu, C.D.; Wang, X.L.; Mao, S.X. Large-scale synthesis of porous Ni2P nanosheets for lithium secondary batteries. Crystengcomm 2012, 14, 8633–8641. [Google Scholar] [CrossRef]
Topochemical Strategies | Materials Categories | Energy-Related Applications | References | |
---|---|---|---|---|
Topochemical deintercalation | MXenes | Ti3C2Tx, V2CTx, Mo2CTx, Ti2CTx, Ti3CNTx, Nb2CTx, Ta2CTx, Ti2CTx, etc. | Electrocatalysts; | [27,28,29,30,31] |
supercapacitors; | ||||
batteries | ||||
Germanane | Photocatalysis | [32] | ||
2D zeolite | Electrocatalysis | [22,33] | ||
Topochemical transformation | 2D TMOs | α-MoO3, h-MoO3, MnO, MnO2, MoO2, h-WO3, etc. | Photocatalysis; electrocatalysts; supercapacitors; batteries | [34,35,36,37,38] |
2D TMDs | Ti5S8, TiSe2, NbS2, NbSe2, MoS2, MoSe2, Y-doped WS2, P-doped MoS2, Y/P-doped WS2, TaS2, etc. | [39,40] | ||
2D TMNs | V2N, MoN, W2N, CrN, NbN, TiN, Mo5N6, h-W2N3, etc. | [25,41,42,43,44] | ||
2D TMPs | Co2P, MoP2, Ni12P5, WP2, etc. | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Chang, L.; Wu, J.; Fang, J.; Xiao, X. Emerging Topochemical Strategies for Designing Two-Dimensional Energy Materials. Micromachines 2021, 12, 867. https://doi.org/10.3390/mi12080867
Liu N, Chang L, Wu J, Fang J, Xiao X. Emerging Topochemical Strategies for Designing Two-Dimensional Energy Materials. Micromachines. 2021; 12(8):867. https://doi.org/10.3390/mi12080867
Chicago/Turabian StyleLiu, Na, Libo Chang, Jiang Wu, Jianhua Fang, and Xu Xiao. 2021. "Emerging Topochemical Strategies for Designing Two-Dimensional Energy Materials" Micromachines 12, no. 8: 867. https://doi.org/10.3390/mi12080867
APA StyleLiu, N., Chang, L., Wu, J., Fang, J., & Xiao, X. (2021). Emerging Topochemical Strategies for Designing Two-Dimensional Energy Materials. Micromachines, 12(8), 867. https://doi.org/10.3390/mi12080867