Microwave Imaging of Breast Skin Utilizing Elliptical UWB Antenna and Reverse Problems Algorithm
Abstract
:1. Introduction
2. Microwave Imaging Modeling of Breast Skin
2.1. Arrangements of Antenna Array Elements
2.2. Modelling of Electromagnetic Behavior
3. The Proposed Algorithm for Image Reconstruction
3.1. Calibration of the Signals
3.2. Paired Multiplying Scattered Output
3.3. Filtering the Output
4. Both Simulation and Measurement Data Used for Image Reconstruction
4.1. Reconstructed Images Using Simulation Data
4.2. Reconstructed Images Using Measured Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abuzaghleh, O.; Barkana, B.D.; Faezipour, M. Noninvasive Real-Time Automated Skin Lesion Analysis System for Melanoma Early Detection and Prevention. IEEE J. Transl. Eng. Health Med. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Avril, F. Value of High-Frequency Us for Preoperative Assessment of Skin. Radiographics 1997, 17, 1559–1565. [Google Scholar]
- Jordanova, N.; Hoffmann, M.K.V. Low-field magnetic susceptibility: A proxy method of estimating increased pollution of different environmental systems. Environ. Geol. 2000, 39, 312–318. [Google Scholar]
- Stner, S.A.T.A.; Dobrei-Ciuchedea, M.; Essler, M.; Bundschuh, R.A.; Sai, H.; Schwaiger, M.; Molls, M.; Weber, W.A.; Grosu, A.-L. Effect of 11 c-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int. J. Rad. Oncol. Biol. Phys. 2008, 72, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Dill-Müller, D.; Maschke, J. Ultrasonography in dermatology. J. Dtsch. Dermatol. Ges. 2007, 5, 689–707. [Google Scholar] [CrossRef]
- Mogensen, M.; Jemec, G.B.E. Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: A review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies. Dermatol. Surg. 2007, 33, 1158–1174. [Google Scholar] [CrossRef] [PubMed]
- Ahadi, M.; Nourinia, J.; Ghobadi, C. Square Monopole Antenna Application in Localization of Tumors in Three Dimensions by Confocal Microwave Imaging for Breast Cancer Detection: Experimental Measurement. Wirel. Pers. Commun. 2021, 116, 2391–2409. [Google Scholar] [CrossRef]
- Elwi, T.A.; Salim, A.J.; Alkhafaji, A.N.; Ali, J.K.; Jalal, A.S.A. Complex Constitutive Characterizations of Materials in the X-Band Using a Complex Constitutive Characterizations of Materials in the X-Band Using a Non-Destructive Technique. Acta Phys. Pol. A 2019, 135, 567–570. [Google Scholar] [CrossRef]
- Mahmood, S.; Ishak, A.; Saeidi, T.; Soh, A.; Jalal, A.; Imran, M.; Abbasi, Q. Full Ground Ultra-Wideband Wearable Textile Antenna for Breast Cancer and Wireless Body Area Network Applications. Micromachines 2021, 12, 322. [Google Scholar] [CrossRef]
- Imran, A.I.; Elwi, T.A. Engineering Science and Technology, an International Journal A cylindrical wideband slotted patch antenna loaded with Frequency Selective Surface for MRI applications. Eng. Sci. Technol. Int. J. 2017, 20, 990–996. [Google Scholar]
- Elwi, T.A. On the Percentage Quantization of the Moisture Content in the Iraqi Petroleum Productions Using Microwave Sensing. Al-Ma’mon Coll. J. 2016, 28, 262–277. [Google Scholar]
- Fouad, S.; Ghoname, R.; Elmahdy, A.E.; Zekry, A.E. Enhancing Tumor Detection in IR-UWB Breast Cancer System. Int. Sch. Res. Not. 2017, 2017, 4606580. [Google Scholar] [CrossRef] [Green Version]
- Porter, E.; Walls, G.; Zhou, Y.; Popovic, M.; Schwartz, J.D. A flexible broadband antenna and transmission line network for a wearable microwave breast cancer detection system. Prog. Electromagn. Res. Lett. 2014, 49, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Mirbeik-Sabzevari, A.; Li, S.; Garay, E.; Nguyen, H.-T.; Wang, H.; Tavassolian, N. Synthetic Ultra-High-Resolution Millimeter-Wave Imaging for Skin Cancer Detection. IEEE Trans. Biomed. Eng. 2018, 66, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Mersani, A.; Osman, L.; Ribero, J.-M. Flexible uwb amc antenna for early stage skin cancer identification. Prog. Electromagn. Res. M 2019, 80, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.M.; Rao, P.K.; Mishra, R. Skin Cancer Detection. In Proceedings of the 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India, 14–15 February 2020; pp. 475–480. [Google Scholar]
- Mohali, G. Wearable Antenna for Skin Cancer Detection. In Proceedings of the 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), Dehradun, India, 14–16 October 2016; pp. 197–201. [Google Scholar]
- Althuwayb, A.A. On-Chip Antenna Design Using the Concepts of Metamaterial and SIW Principles Applicable to Terahertz Integrated Circuits Operating over 0.6–0.622 THz. Int. J. Antennas Propag. 2020, 2020, 6653095. [Google Scholar] [CrossRef]
- Shirkolaei, M.M. Wideband linear microstrip array antenna with high efficiency and low side lobe level. Int. J. RF Microw. Comput. Eng. 2020, 30, e22412. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Azpilicueta, L.; Naser-Moghadasi, M.; Akinsolu, M.O.; See, C.H.; Liu, B.; Abd-Alhameed, R.A.; Falcone, F.; Huynen, I.; et al. A Comprehensive Survey of “Metamaterial Transmission-Line Based Antennas: Design, Challenges, and Applications”. IEEE Access 2020, 8, 144778–144808. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Shukla, P.; Parchin, N.O.; Azpilicueta, L.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Huynen, I.; Denidni, T.A.; et al. Metamaterial-Inspired Antenna Array for Application in Microwave Breast Imaging Systems for Tumor Detection. IEEE Access 2020, 8, 174667–174678. [Google Scholar] [CrossRef]
- Saeidi, T.; Ismail, I.; Wen, W.P.; Alhawari, A.R.H.; Mohammadi, A. Ultra-Wideband Antennas for Wireless Communication Applications. Int. J. Antennas Propag. 2019, 2019, 7918765. [Google Scholar] [CrossRef]
- Ahadi, M.; Isa, M.; Saripan, M.I.; Hasan, W.Z.W. Three dimensions localization of tumors in confocal microwave imaging for breast cancer detection. Microw. Opt. Technol. Lett. 2015, 57, 2917–2929. [Google Scholar] [CrossRef]
- Li, X.; Hagness, S.C. A confocal microwave imaging algorithm for breast cancer detection. IEEE Microw. Wirel. Compon. Lett. 2001, 11, 130–132. [Google Scholar] [CrossRef] [Green Version]
- Bocquet, B.; Van De Velde, J.C.; Mamouni, A.; Leroy, Y.; Giaux, G.; Delannoy, J.; Delvalee, D. Microwave radiometric imaging at 3 GHz for the exploration of breast tumors. IEEE Trans. Microw. Theory Tech. 1990, 38, 791–793. [Google Scholar] [CrossRef]
- Stauffer, P.R.; Rodriques, D.B.; Salahi, S.; Topsakal, E.; Oliveira, T.R.; Prakash, A.; D’Isidoro, F.; Reudink, D.; Snow, B.W.; Maccarini, P.F. Stable microwave radiometry system for long term monitoring of deep tissue temperature. In Proceedings of the Energy-Based Treatment of Tissue and Assessment VII, San Francisco, CA, USA, 3–5 February 2013; 8584. [Google Scholar]
- Gil Cano, J.D.; Fasoula, A.; Duchesne, L.; Bernard, J.-G. Wavelia Breast Imaging: The Optical Breast Contour Detection Subsystem. Appl. Sci. 2020, 10, 1234. [Google Scholar] [CrossRef] [Green Version]
- Brancaccio, A.; Dell’Aversano, A.; Leone, G.; Solimene, R. Subsurface Detection of Shallow Targets by Undersampled Multifrequency Data and a Non-Cooperative Source. Appl. Sci. 2019, 9, 5383. [Google Scholar] [CrossRef] [Green Version]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite- Difference Time-Domain Method, 2nd ed.; Artech House: Norwood, MA, USA, 2000. [Google Scholar]
- Elahi, M.A.; O’Loughlin, D.; Lavoie, B.R.; Glavin, M.; Jones, E.; Fear, E.C.; O’Halloran, M. Evaluation of Image Reconstruction Algorithms for Confocal Microwave Imaging: Application to Patient Data. Sensors 2018, 18, 1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alani, S.; Zakaria, Z.; Saeidi, T.; Ahmad, A.; Alsariera, H.; Al-Heety, O.S.; Mahmood, S.N. Electronic bandgap miniaturized UWB antenna for near-field microwave investigation of skin. AIP Adv. 2021, 11, 035228. [Google Scholar] [CrossRef]
- Thomas, J.-L.; Fink, M.A. Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: Application to transskull therapy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 1122–1129. [Google Scholar] [CrossRef]
- Fink, M. Time reversal of ultrasonic fields. I. Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1992, 39, 555–566. [Google Scholar] [CrossRef]
- Liu, D.; Kang, G.; Li, L.; Chen, Y.; Vasudevan, S.; Joines, W.; Liu, Q.H.; Krolik, J.; Carin, L. Electromagnetic time-reversal imaging of a target in a cluttered environment. IEEE Trans. Antennas Propag. 2005, 53, 3058–3066. [Google Scholar] [CrossRef]
- Mukherjee, S.; Tamburrino, A.; Haq, M.; Udpa, S.; Udpa, L. Far field microwave NDE of composite structures using time reversal mirror. NDT E Int. 2018, 93, 7–17. [Google Scholar] [CrossRef]
- Kosmas, P.; Rappaport, C.M. Time reversal with the FDTD method for microwave breast cancer detection. IEEE Trans. Microw. Theory Tech. 2005, 53, 2317–2323. [Google Scholar] [CrossRef]
- Akinci, M.N.; Çayören, M.; Akduman, I. Near-field orthogonality sampling method for microwave imaging: Theory and experimental verification. IEEE Transac. Microw. Theory Technol. 2016, 64, 2489–2501. [Google Scholar] [CrossRef]
- Islam, M.M.; Samsuzzaman, M.; Faruque, M.R.I.; Misran, N.; Islam, M.; Islam, M.T. Microstrip line-fed fractal antenna with a high fidelity factor for UWB imaging applications. Microw. Opt. Technol. Lett. 2015, 57, 2580–2585. [Google Scholar] [CrossRef]
- Roggenbuck, M.; Catenacci, J.; Walker, R.; Hanson, E.; Hsieh, J.; Patch, S.K. Thermoacoustic Imaging with VHF Signal Generation: A New Contrast Mechanism for Cancer Imaging Over Large Fields of View. Abdomen Thorac. Imaging 2014, 523–557. [Google Scholar] [CrossRef]
- Hao, X.; Xiong, W.; Tao, Q.; Huan, M.; Yexian, Q.; Witte, R.S. Time-efficient contrast-enhanced thermoacoustic imaging modality for 3-D breast cancer detection using compressive sensing. In Proceedings of the General Assembly and Scientific Symposium URSI GASS, 2014 XXXIth URSI, Beijing, China, 16–23 August 2014; pp. 1–2. [Google Scholar]
- Kosmas, P.; Rappaport, C. A Matched-Filter FDTD-Based Time Reversal Approach for Microwave Breast Cancer Detection. IEEE Trans. Antennas Propag. 2006, 54, 1257–1264. [Google Scholar] [CrossRef]
- Lim, H.B.; Nhung, N.T.T.; Li, E.-P.; Thang, N.D. Confocal Microwave Imaging for Breast Cancer Detection: Delay-Multiply-and-Sum Image Reconstruction Algorithm. IEEE Trans. Biomed. Eng. 2008, 55, 1697–1704. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R. Structural Similarity Based Image Quality Assessment. Digit. Video Image Qual. Percept. Coding 2017, 7, 225–242. [Google Scholar] [CrossRef]
- Li, H.J.; Kiang, Y.W. Radar and Inverse Scattering. The Electrical Engineering Handbook. 2005. Available online: https://www.sciencedirect.com/topics/engineering/cross-range (accessed on 13 April 2021).
- Li, H.-J.; Liu, T.-Y.; Yang, S.-H. Superhigh image resolution for microwave imaging. Int. J. Imaging Syst. Technol. 1990, 2, 37–46. [Google Scholar] [CrossRef]
- Simonov, N.; Son, S.-H.; Kim, B.-R.; Jeon, S.-I. Investigation of spatial resolution in a microwave tomography system. In Proceedings of the 2014 International Conference on Electronics, Information and Communications (ICEIC), Kota Kinabalu, Malaysia, 15–18 January 2014; pp. 1–2. [Google Scholar] [CrossRef]
- Simonov, N.A.; Jeon, S.I.; Son, S.H.; Lee, J.M.; Kim, H.J. About Equivalency of Two Methods of Information Gathering in Microwave Imaging; Radio Technology Research Department, ETRI: Daejeon, Korea, 2012. [Google Scholar]
- Chouiti, S.M.; Merad, L.; Meriah, S.M.; Raimundo, X.; Taleb-Ahmed, A. An Efficient Image Reconstruction Method for Breast Cancer Detection Using an Ultra-Wideband Microwave Imaging System. Electromagnetics 2016, 36, 225–235. [Google Scholar] [CrossRef]
- Mobashsher, A.T.; Abbosh, A.M.; Wang, Y. Microwave System to Detect Traumatic Brain Injuries Using Compact Unidirectional Antenna and Wideband Transceiver With Verification on Realistic Head Phantom. IEEE Trans. Microw. Theory Technol. 2014, 62, 1826–1836. [Google Scholar] [CrossRef]
- Mahmud, M.; Islam, M.T.; Samsuzzaman, M.; Kibria, S.; Misran, N. Design and parametric investigation of directional antenna for microwave imaging application. IET Microw. Antennas Propag. 2017, 11, 770–778. [Google Scholar] [CrossRef]
- Danjuma, I.M.; Akinsolu, M.O.; See, C.H.; Abd-Alhameed, R.A.; Liu, B. Design and Optimization of a Slotted Monopole Antenna for Ultra-Wide Band Body Centric Imaging Applications. IEEE J. Electromagn. RF Microw. Med. Biol. 2020, 4, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.T.; Samsuzzaman, M.; Islam, M.; Kibria, S.; Singh, M.J. A Homogeneous Breast Phantom Measurement System with an Improved Modified Microwave Imaging Antenna Sensor. Sensors 2018, 18, 2962. [Google Scholar] [CrossRef] [Green Version]
Images | SSI | Images | SSI |
---|---|---|---|
Figure 6, Figure 7 and Figure 8, proposed | 0.9775 | Figure 10, TR | 0.8567 |
Figure 6, Figure 7 and Figure 8, TR | 0.8756 | Figure 10, FDMAS | 0.8187 |
Figure 6, Figure 7 and Figure 8, FDMAS | 0.8021 | Figure 10, MWDAS | 0.7923 |
Figure 6, Figure 7 and Figure 8, MWDAS | 0.7898 | Figure 11, pro | 0.9843 |
Figure 9, pro | 0.9899 | Figure 11, TR | 0.9278 |
Figure 9, TR | 0.9679 | Figure 11, FDMAS | 0.872 |
Figure 9, FDMAS | 0.8943 | Figure 11, MWDAS | 0.8055 |
Figure 9, MWDAS | 0.74 | Figure 12, pro | 96.25 |
Figure 10, pro | 0.9687 | Figure 14, pro | 95.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alani, S.; Zakaria, Z.; Saeidi, T.; Ahmad, A.; Imran, M.A.; Abbasi, Q.H. Microwave Imaging of Breast Skin Utilizing Elliptical UWB Antenna and Reverse Problems Algorithm. Micromachines 2021, 12, 647. https://doi.org/10.3390/mi12060647
Alani S, Zakaria Z, Saeidi T, Ahmad A, Imran MA, Abbasi QH. Microwave Imaging of Breast Skin Utilizing Elliptical UWB Antenna and Reverse Problems Algorithm. Micromachines. 2021; 12(6):647. https://doi.org/10.3390/mi12060647
Chicago/Turabian StyleAlani, Sameer, Zahriladha Zakaria, Tale Saeidi, Asmala Ahmad, Muhammad Ali Imran, and Qammer H. Abbasi. 2021. "Microwave Imaging of Breast Skin Utilizing Elliptical UWB Antenna and Reverse Problems Algorithm" Micromachines 12, no. 6: 647. https://doi.org/10.3390/mi12060647
APA StyleAlani, S., Zakaria, Z., Saeidi, T., Ahmad, A., Imran, M. A., & Abbasi, Q. H. (2021). Microwave Imaging of Breast Skin Utilizing Elliptical UWB Antenna and Reverse Problems Algorithm. Micromachines, 12(6), 647. https://doi.org/10.3390/mi12060647