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Abstract: Microwave breast imaging has been reported as having the most potential to become an
alternative or additional tool to the existing X-ray mammography technique for detecting breast
tumors. Microwave antenna sensor performance plays a significant role in microwave imaging
system applications because the image quality is mostly affected by the microwave antenna sensor
array properties like the number of antenna sensors in the array and the size of the antenna sensors.
In this paper, a new system for successful early detection of a breast tumor using a balanced slotted
antipodal Vivaldi Antenna (BSAVA) sensor is presented. The designed antenna sensor has an
overall dimension of 0.401λ × 0.401λ × 0.016λ at the first resonant frequency and operates between
3.01 to 11 GHz under 10 dB. The radiating fins are modified by etching three slots on both fins
which increases the operating bandwidth, directionality of radiation pattern, gain and efficiency.
The antenna sensor performance of both the frequency domain and time domain scenarios and
high-fidelity factor with NFD is also investigated. The antenna sensor can send and receive short
electromagnetic pulses in the near field with low loss, little distortion and highly directionality.
A realistic homogenous breast phantom is fabricated, and a breast phantom measurement system is
developed where a two antennas sensor is placed on the breast model rotated by a mechanical scanner.
The tumor response was investigated by analyzing the backscattering signals and successful image
construction proves that the proposed microwave antenna sensor can be a suitable candidate for a
high-resolution microwave breast imaging system.

Keywords: homogenous breast phantom; antipodal Vivaldi antenna; microwave imaging; breast
tumor detection

1. Introduction

Recently, early detection of breast cancer has been identified as a vital preventative measure
against untimely deaths among women all over the world. The main cause is the presence of one
or more malignant cell clusters inside the breast tissue [1]. The survival rate can be increased up to
97% by early detection and treatment but for this, a highly reliable system for early detection with
an exceedingly efficient method is required [2]. Healthcare diagnosis tools based on microwaves
have been prioritized by researchers these days. The contrast of microwave signals scattered from
different tissue types can be distinguished by microwave antenna sensors. Radiated and scattered
power are received by one or more antenna sensors in microwave imaging. Microwave-based portable
medical diagnosis tools can save lives by utilizing microwave sensor antennas that have high efficiency
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and sensitivity. In this regard, a microwave imaging sensor could be an alternative tool to existing
conventional approaches like X-ray mammography, MRI, and ultrasound imaging for early detection of
breast tumors [3].

The main benefits of microwave imaging systems are their low complexity, low cost, and the fact
they do not produce ionizing radiation. Microwave imaging technology has made rapid progress in
recent years, but it is still a challenge to produce an accurate and high-resolution image of the scattered
signals. To date, numerous broadband and planar printed monopole microwave antennas have been
developed for breast cancer detection due to their simple structure, broadband property, compact size,
and ease of fabrication. The antenna used as transceiver should be compact, wider bandwidth and high
gain for an efficient microwave imaging system with high resolution and dynamic range [4]. The main
working principle is based on the difference between the dielectric properties of healthy breast tissue
and malignant cells. The water content of every biological tissue varies, which causes different electrical
properties. Furthermore, the presence of ions and free radicals increase the dielectric loss in malignant
tissues. Thus, the tumor, with higher dielectric constant than normal breast tissue, can be detected by
analyzing the scattering signals from single or multiple illuminations [5]. Several types of antennas are
developed for breast phantom measurements, such as the unit cell antenna [6], the cross-Vivaldi
antenna [7], the compact metamaterials antenna [8], and the slot antenna [9,10]. In this case,
the antipodal Vivaldi antenna can be a good candidate for its high directive radiation patterns,
compact size and higher gain [11]. The challenge of designing a Vivaldi antenna is how to obtain a
directional radiation pattern and resonance at a lower frequency. Vivaldi antenna sensors in medical
applications have been the subject of research for the last few years [12]. Various researchers have
proposed different techniques to enhance the radiation performance of Vivaldi antennas at higher
frequencies [13]. Different techniques including the use of lenses [14], zero index material [15],
high permittivity material were applied to lead the energy in the aperture flare in the end-fire direction.
One of the methods of enhancing the performance of the Vivaldi antenna is to add a parasitic ellipse into
the patch [16]. It expands the field coupling but the size is not compact (140 × 66 mm2) and antenna
fails to operate in lower frequencies. In [17], a tapered slot square (75× 75 mm2) shape Vivaldi antenna
was proposed. The antenna has a directional radiation pattern but fails to achieve higher frequencies.
A cavity-backed Vivaldi antenna for breast phantom screening was proposed [5], where the size of
the antenna is compact but the gain is not satisfactory. Investigations reported in [18] showed that an
improved Vivaldi antenna was anticipated with planar directors at front of the transverse resonator
and aperture for increasing the directivity and gain but the dimensions were increased dramatically
and VSWR was not contagious. An antipodal Vivaldi antenna with compact size was reported in [19]
which achieves a good operating bandwidth but the efficiency and gain were less than 70% and 5 dBi,
respectively. The directivity of the Vivaldi antenna reported in [20] was improved, but the size exceeds
the acceptable dimensions for use in portable devices. A compact antipodal Vivaldi antenna was
reported in [21] where the antenna achieves wide bandwidth, but the gain is low at the lower frequency
band and its structure is complex. An Exponential Slot Edge (ESE) antenna was proposed in [22]
where a palm tree antipodal Vivaldi structure was used to achieve directional radiation, but the
antenna fails to attain lower frequency band and higher gain. A fern leaf type fractal structure was
introduced to achieve Vivaldi properties but there is no clarification of microwave imaging technique
and in addition no simulation or measurement results were presented [23]. An antenna array with
12 grooved slot components was used for an ultra-wideband (UWB)-based microwave imaging system
that achieves acceptable gain [24]. The array produced a 5 GHz band that makes the antenna unusable
over the lower portion of the UWB bandwidth. Several numbers of antennas with different frequencies,
dimension, gain, and efficiencies have been proposed for microwave imaging systems. The system
proposed in [25] implemented microwave imaging but the system is expensive and not compact.
A new handheld tumor detection system was proposed in [26], where a cross-shaped array was
designed covering human breast but the system is complex and the image constructed is noisy and
it is hard to differentiate the tumor presence from the post-processing alone. Several researchers have
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reported numerous time-domain measurements using breast imaging systems [27–30]. The main
advantages of time domain measurements are less screening time and cost-effectiveness. A multistatic
radar-based experimental system with a 16-unit antenna array for the detection of breast cancer was
proposed in [27]. A time-domain system for microwave breast cancer detection was proposed in [29]
where an antenna array was tested with a phantom but the antenna array failed to attain the lower band
and no imaging results were classified. Kwon et al. proposed a time-domain breast cancer imaging
system based on CMOS circuits, which is both quick and cost-effective. The low signal-to-noise
ratio (SNR), which is an inherent drawback of time domain systems, can be significantly improved
by the signal averaging of multiple measurements [31]. However, the signal averaging of repeated
measurements introduces signal distortions due to clock jitter. Gaussian bandpass filtering (BPF) for
image filtering was used in [30] for time domain microwave imaging of breast cancer. Researchers at
McGill University studied the time-domain radar-based imaging for breast health intensive care [32,33].
The system used a very high-speed oscilloscope, high-precision pulse generator and complex switches.
It requires a very quick sampling clock in a way that even a little jitter inside the sampling clock can
blur the images [34]. The problem of time domain measurement is a low signal to noise ratio resulting
with the high frequency radio frequency signal reduces drastically inside breast tissue. Therefore,
the signal should be measured frequently at spatially diverse points around the region of interest to
improve SNR, as the SNR is relative to the square root of the number of measurements.

In this paper, an improved BSAVA with enhanced UWB band for microwave breast imaging
sensor is presented. The fins are etched with three slots on each side to enhance the bandwidth and
gain as well as the directive radiation pattern that is coherent with the size of the antenna. The antenna
sensor operates within 3.1 to 11 GHz with an evenly distributed current that helps to achieve a
highly directive radiation pattern and a good gain of 6.8 dBi. Simulated and measured results of both
frequency domain and time domain are also presented to validate the use of the antenna sensor in
a microwave imaging system. The antenna sensor performance is tested by developing a realistic
breast phantom screening system for detecting malignant cells inside the breast. The authors used a
cylindrical mechanical setup where two antenna sensors are placed at a distance of 255 mm at opposite
sides of the cylinder and rotated 360◦ around the phantom with a stepper motor controlled by an
Arduino-Uno module. The transmitting and receiving antennas are directly connected to a PNA
Network Analyzer. The main objective of the screening system is to track the behavior of the change of
backscattering signals received from the receiver antenna sensor. This allows identifying the change of
dielectric properties of the different elements of the breast phantom. The noticeable change in received
signals is the main issue in identifying the tumor. Further analysis of the signals concludes with the
decision whether the system can be effective for detecting tumors inside a human breast.

2. Antenna Sensor Design Structure

The main aim of this design was to identify the differences in dielectric properties between healthy
breast tissue and tumorous tissues. Multiple resonance frequencies are necessary for better penetration
and high-resolution imaging in the deeper portion of the breast [5]. The prerequisite for microwave
imaging is that the antenna sensor must have high gain, a directive radiation pattern, wider bandwidth
and lower resonance frequency. The most promising candidate for all this is the Vivaldi antenna
sensor for its higher gain, and highly directive radiation due to its high peak value for pulse coverage.
It offers a narrow pulse width with a stable group delay. A conventional Vivaldi antenna is modified to
achieve this characteristic by introducing BSAVA [22,23,35,36]. Figure 1 shows the geometric layout
and fabricated prototype of the proposed BSAVA. The antenna sensor is printed on the low-cost FR-4
substrate with a thickness of 1.6 mm, loss tangent of 0.02 and relative permittivity of 4.4. The overall
dimension of the BSAVA is 40 × 40 × 1.6 mm3. The main radiating element is determined by modified
patch and ground with curved slot line, radiating fins and the feeding line. These parameters are
adjusted to get desired antenna specification by etching the slots. Asymmetrical slots are examined for
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increasing the electrical length to decrease the lower band. The inner and outer edge of the tapered
shape is estimated by:

xi = ±cs · exp(ksy)∓ (cs + 0.5 · cw) (1)

x0 = ±cw · exp(kwys f )∓ (cs + 0.5 · cw) (2)

where xi and x0 both show the distances from the slot centerline towards the inner and outer edges,
individually [37]. The cutoff frequency of the proposed prototype is estimated by the equation reported
in [38]:

fr =
c[

w′
√
(εr)

] (3)

where fr is resonant frequency, c is the speed of light, w
′

is the width of the opening blaze edge and
εr is the relative permittivity of the prototype material. Three 0.5 mm width slots have been cut in
each fin of both the top and bottom radiator to achieve larger bandwidth. These narrow cuts have the
significant effect of surface current distribution which helps to enhance the lower band. For balancing
the Vivaldi antenna, a partial slot at the bottom of the ground plane with the height of Gs has been
cut out. The antenna sensor is fed with a 50 Ω SMA connector which has a dielectric constant of 2.08
and electrical conductivity of 4.62 × 104 S/m. Different adjusted design parameters are presented in
Table 1.
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Figure 1. (a) Antenna Sensor geometry; fabricated prototype (b) front view and (c) back view. 

  

Figure 1. (a) Antenna Sensor geometry; fabricated prototype (b) front view and (c) back view.
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Table 1. Different adjusted design parameters.

Parameters mm Parameters mm

L 40 GS 8
W 40 Gt 35
PW 9 Gf 25.5
PL 12 Gd 20
GW 9 Wf 1.4
GL 12 T1, T2, T3, T4, T5, T6 0.5
h 1.6

The surface current distribution of the proposed BSAVA for different frequencies of 3.28, 4.24
and 6.16 GHz is shown in Figure 2. Most of the current is conducted through the radiating fins and
around the cutting slots. The current is well distributed along with the patch and ground at the lower
frequencies. Several nulls are observed at the higher frequencies because of the higher-order current
mode excitation. The current paths are changing due to the slots which produce higher order current
mode. This characteristic has a great effect on antenna performance. Simultaneously, the gain in the
main lobe has improved and radiation pattern improves remarkably. The slots help to avoid tapping,
as a result, the control over current distribution is restored to the adjacent edges of the BSAVA.
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3. Parametric Study

The proposed BSAVA sensor comprise a patch and ground facing 180◦ with respect to each other.
A rectangle-shaped plane attached to the ground with the length and width denoted by Gs and Gt

for balancing the Vivaldi antenna. Three slots each has been cut out from the radiating fins of the
antenna denoted by T1, T2, T3, T4, T5, and T6. There is a significant effect of changing the width of the



Sensors 2018, 18, 2962 6 of 23

fins on antenna performance. Figure 3 denotes different adjustments on patch and ground of the basic
BSAVA sensor. First of all, the slots etched from both patch and ground has the same size. Afterward,
the antenna parameters are being investigated. Finally, satisfactory results are obtained with the
modifications which exhibit the desired features of the BSAVA. Table 2 represents the evaluations of the
effects of different modification of antenna design on performance. Different modifications including
the final design are illustrated in Figures 4 and 5. The observation shows that the proposed prototype
has wider bandwidth comparing to the other tested shapes including basic, patch slotted and ground
slotted designs. The basic BSAVA has a bandwidth of 3.01 to 5.31 GHz under 10 dB. By applying slots
in the patch, the starting frequency has shifted to a lower frequency of 2.90 GHz but the bandwidth is
2.90 to 5.12 GHz. Again, by using the slot in the ground the bandwidth is slightly increased to upper
frequency from 3.01 to 5.36 GHz but it doesn’t cover the UWB band. In contrast, in the proposed
BSAVA with six slots in the patch and ground the lower frequency started from 3.01 GHz and the
higher frequency is significantly shifted to 11 GHz with a continuous wideband frequency that covers
the entire UWB frequency band. The peak gains for the tested shapes are also presented in Table 2.
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Figure 3. Different modifications on patch and ground (a) basic (b) patch etched (c) ground etched
(d) proposed shape.

The proposed antenna reached a peak gain of 7.06 dBi, while the basic, patch slotted and ground
slotted BSAVA has the gain of 5.62, 6.33 and 5.54 dBi, respectively. At the lower frequency, the
gain is increased due to the modification of the radiating elements. The slots in both the radiator
increase the electrical length that create strong directional radiation because of the mitigation of the
surface current in the vertical direction which does not contribute to radiation in the end-fire direction.
This modification has a significant effect on gain and efficiency.
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Table 2. Comparison of results on different modifications.

Different Modifications Operating Bandwidth (GHz) Peak Realized Gain (dBi)

Basic 3.01–5.31 5.62
Patch slotted 2.90–5.12 6.33

Ground slotted 3.01–5.36 5.54
Proposed 3.01–11 7.06

4. Antenna Sensor Performance Measurement

The performance of the proposed prototype has been analyzed and adjusted by using the CST
microwave studio (Dassault Systèmes SE, Vélizy-Villacoublay, France). The data analysis and scientific
graphing software Origin Pro (OriginLab Corporatio, Wellesley Hills, MA, USA.) is used to plot the
simulated results. A PNA series vector network analyzer (E8362C 10 MHz-67 GHz) from Keysight
Technologies (Santa Rosa, CA, USA) is used to measure the S11 responses and the setup is shown in
Figure 6a. A StarLab near-field antenna measurement system (Microwave Vision Group, Paris, French)
as shown in Figure 6b is used to measure the radiation pattern, efficiency, and gain of the prototype.
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The system measures the radiated power of the antenna in the near field region for computing the
equivalent far-field values of the antenna under test (AUT). The AUT is positioned in the middle of a
circular arch on the test bed which consists of 16 separate receiving antennas. The antennas are evenly
spread out across the arch. The AUT is rotated 360 degrees horizontally to create a full 3D scan from
which we get the 3D radiation pattern. The gain and efficiency are computed from the far field data.

4.1. Frequency Domain Performance

The measured and simulated reflection coefficient (S11) curves of the optimized design are
displayed in Figure 7. The BSAVA has an operating bandwidth of 7.9 GHz ranging from 3.01 to
11 GHz. The starting resonance frequency is 3.01 and the highest resonance frequency is noticed at 3.2
with several peaks across the bandwidth. The modified slot affects the BSAVA to acquire the lower
frequency bandwidth. A good agreement is observed between the measured and simulated results.
Being compact and simple design, the proposed prototype has a wider bandwidth than other recently
reported antennas [16,17,39]. The entire bandwidth has no band gap.
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The measured and simulated peak gain against frequency is shown in Figure 8a. The BSAVA
has the higher gain at the lower frequency band which is essential for microwave imaging systems.
The average peak gain is 6 dBi along with the maximum peak gain of 7.1 dBi at 8.2 GHz. The simulated
and measured results are consistent. The BSAVA achieves a better gain being simple and compact
structure compared to recently published Vivaldi antennas. Figure 8b displays the measured and
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simulated radiation efficiency of the proposed BSAVA with respect to frequency. From the graph,
we can see that the average radiation efficiency is about 92% with a maximum of 95%. A good
agreement between the simulated and measured results was observed. The measured and simulated
2D and 3D radiation patterns are illustrated in Figure 9 for three different resonance frequencies of
3.28, 4.24 and 6.16 GHz. The Phi and Theta spherical coordinates are related to the Cartesian axis’s
configurations such as Theta = 0◦ to 360◦ is the XZ cut whereas Phi = 0◦, Theta = 0◦ to 360◦ and
Phi = 90◦ is the YZ cut and Theta = 90◦, Phi = 0◦ to 360◦ is considered the XY cut. The XZ-plane
(ϕ = 0◦) is considered as E-plane and YZ-plane (ϕ = 90◦) is considered as H-plane. From the near
field measurement, the proposed BSAVA is directional and the main radiation direction is towards
the boresight. The key lobes of the radiation patterns are fixed towards the end-fire direction over
the entire frequency band. The BSAVA has a stable radiation pattern that guarantees a higher rate of
scattered signals having low noise density at the backward direction. With the increase of frequency
antenna directivity is increased with the higher order modes.
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4.2. Time Domain Performance

Appendix A examines the performance of the time domain performance of the BSAVA at three
different scenarios of face to face, side by side X and side by side Y at 250 mm distant is presented in
Figure A1a–c. To validate the correspondence between the transmitter (TX) and received (RX) signals,
the fidelity factor needs to be determined. The fidelity factor is calculated at 0.94, 0.85 and 0.98
using Equation (A1) for the face to face, side by side X and side by side Y position, respectively.
The group delay is measured from the negative derivatives of the phase response against frequency
and presented in Figure A1d. Among the three set ups the group delay of side by side, Y is less than
both the face to face and side by side X. This is almost constant over the frequency, as a result,
this setup is recommended for microwave imaging systems. In Appendix B, the quality factor and
Near Field Directivity (NFD) are also calculated and presented. To verify the physical dimensions of
the designed antenna, we have also analyzed the theoretical and calculated Q factor. In order to
investigate the amount of power coupled to the tissue, we computed a near-field directivity (NFD)
factor of about 60% for the antenna.

5. Homogenous Phantom Development and Measurement

In the construction of a homogeneous phantom, the breast was considered as one whole fatty
layer with a tumor inside. The materials and mixing ratios for the homogeneous phantom, tumor,
and skin are listed in Table 3 below. For the homogenous phantom, sodium chloride (NaCl),
polyethylene powder, agar powder, xanthan gum, sodium dehydroacetate monohydrate and distilled
water were used. Polyethylene powder was used to adjust the permittivity and NaCl to adjust the
conductivity. Agar was used to maintain the shape of the phantom by preventing separation of
water content, xanthan gum was used as a thickener and sodium dehydroacetate monohydrate as
a preservative. Basically, the materials which alter the dielectric properties of this method are NaCl,
polyethylene powder, agar and distilled water, and they are the main ingredients in the phantom.
The procedure of the phantom fabrication for each layer is represented by a flowchart in Figure 10.
The fabricated homogenous phantoms which have two layers of fat and tumor without a tumor and
with a single tumor are displayed in Figure 11a,b, respectively, and were developed in the UKM organic
lab. The radius of the phantom is 50 mm and the tumor is located at 25 mm distance from the center of
the phantom. The tumor diameter and height are 10 mm and 40 mm, respectively. The measurement
is taken within the frequency range of 3.1–10.6 GHz. The measurement of the dielectric constant (Dk)
and loss tangent (Tan δ) are conducted by using a dielectric probe from a KEYSIGHT 85070E Dielectric
Probe Kit with the 85070 software installed with a PNA-L N5232A 300 KHz to 20 GHz vector network
analyzer (VNA, Keysight Technologies, Santa Rosa, CA, USA). Measurements of the dielectric constant
(Dk) and loss tangent (Tan δ) are conducted. The probe test is indicated as one of the most popular and
easy to use methods to obtain the dielectric properties [40–42], and it is considered as a non-destructive
test that doesn’t affect the measuring substrate with a probe method measurement capability of up to
20 GHz [43].

The testing process starts by doing the open, short and 25 ccs sterile water calibration procedure.
The setting of the dielectric probe measurement system distributed with the Keysight Dielectric Probe
model 85070E connected to the performance network analyzer (PNA-L) model N5232A up to 20 GHz
via a high-temperature coaxial cable. The dielectric constant of fat is 12.58 and the conductivity is
0.141 S/m and the tumor has a dielectric constant of 57.37. The tumor has a high dielectric constant
due to its higher water content [44]. We have also prepared a 3 mm skin layer and the measured
dielectric properties of the skin layer material are 23.44. The measured dielectric constant of the
muscle-like material which has been placed under the breast phantom to analyze the body effect is
near about 44. The higher the frequency, the higher is the attenuation and vice versa. The lower the
frequency, the larger the wavelength, and the deeper the penetration power. Penetration is not just
about energy, it is also about the properties of the material and the various modes of interaction
between electromagnetic radiation and matter. Each material has an absorption and reflection
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spectrum because of this penetration. Low-frequency EM radiation is highly penetrating as the photons
do not have enough energy to be absorbed by atomic transitions, molecular resonances and so on.
For some tissues, at higher frequencies or shorter wavelengths, some of these modes of interaction
become possible. It depends on skin depth which has an inverse relationship with conductivity and
frequency. In general, EM penetration into a lossy material has an inverse dependence with frequency.
The penetration depth (or better skin depth) depends on the dielectric and sometimes magnetic
properties of the medium. Important values are e” and µ” which are the dielectric or magnetic loss
factors. In plain words the higher those values are the more energy they take out of the field, reducing
the amplitude and therefore its penetration depth (like extinction coefficients in optics). Those loss
factors are not constant over frequency. Often e” increases with increasing frequency, enhancing
absorption and reducing penetration.

Table 3. List of materials and mixing ratios used for homogeneous phantom.

Material
Quantity Purpose

Fatty Phantom Tumor Skin Muscle

Distilled water 420 mL 420 mL 80 mL 420 mL Solvent
Polyethylene powder 500 g 43 g - 100 g Modifying electrical permittivity
Agar 20 g 20 g 5.88 g 20 g Mechanical strength
NaCl 2.3 g 28.3 g - 22.5 g Modifying electrical conductivity
Xanthan gum 6.25 g 6.25 g 7 g 6.25 Thickener
Sodium dehydroacetate
monohydrate 0.25 g 0.25 g 0.25 Preservative

Safflower oil - - 14 mL Modification of electric conductivity
Propylene glycol - - 7 g Modification of electric conductivity

Formalin - - 0.3
mL

Rising melting temperature of
agar-gelatin and phantom stabilizing

Detergent - - 0.3 g Surfactant
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Figure 11. Fabricated homogenous breast phantom, (a) without tumor and (b) with a single tumor
inside the phantom.

Figure 12a,b shows the measured results with a standard curve of the conductivity and relative
permittivity of the homogeneous breast phantom. From Figure 12, it can be seen that after increasing
the frequency, fat and tumor relative permittivity decreases but conductivity increases.
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6. Microwave Imaging System Setup

The main aim of the imaging system is to identify the change in backscattering signal with the
presence of different dielectric properties of human breast tissue including the high dielectric tumor.
An automated system is developed where all the mechanical parts are controlled by a single PC,
the antenna sensor is working as a transceiver and the signals are collected by a PNA. The block
diagram and practical measurement setup of the full imaging system are shown in Figure 13a–d.
The data is collected from a mechanical setup of a rotating platform where an Arduino Uno and
stepper motor driver are used to control the rotation of the system from 0 to 2π. 360◦ rotation was
performed where each step was 7.2◦ total counting 50 points. For testing, the phantom is rotated and
we collect the data to identify the position of the tumor through analyzing the backscattering signals.
The system setup is illustrated in Figure 13b where two prototypes of the antenna sensor are placed in
the side by side Y direction at a distance of 250 mm. The distance from the phantom to the antenna is
58 mm. The PNA is connected to a PC with GPIB port for data collection and further processing of
data. During the measurement, we have also inserted a cylindrical bowl containing material with
dielectric properties similar to the pectoralis major muscle found under the breast tissue and repeated
all the experiments. This inclusion caused the negligible change to the measured data. The modified
delay and sum algorithm is designed to ignore multiple reflection signals by weighting all the delay
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and sum calculations with a correlation factor that rewards similarity between the delayed signals
and penalizes signals from multiple reflections. They will exhibit lower correlation as the calculated
delays will not account for the extra phase shift caused by a longer distance traveled by the multiple
reflection signals.
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7. Microwave Imaging Results and Discussions

For successful detection of a tumor, the antenna sensor performance is tested. For the measurements,
the frequency range is considered from 3 to 11 GHz with M = 201 frequency points. From the measurement
setup, the S-parameter (ϕl, fm) data in the frequency domain are recorded for l = 1, 2, . . . , L rotated
positions, where L is 50. Thus the array records data for every 7.2◦ rotation, resulting in 50 observations.
The observations are numbered 1 to 50 in the order they were recorded. Then it was observed
that the even-numbered observation set is simply a 7.2◦ offset measurement of the odd-numbered
observations. The S parameter matrix is thus split into two equal sized matrices of M × (L/2) size,
named S-parameter-odd and S-parameter-even. Then the Γ(φn, fm) matrix is generated by subtracting
S-parameter-even from S-parameter-odd, where m and n denote the angular spot of every single spin.
Here m = 1, 2, . . . , M and n = 1, 2, . . . , L/2. After collecting the data, the image of the interior of the
phantom is constructed by post-processing. The conversion of the reflection coefficient to the time
domain from frequency domain is done by using the inverse discrete Fourier transform:

S(ϕn, tk) = exp{[Dk×m]} × Γ(ϕn, fm)

=

 S(φ1, t1) · · · S(φN , t1)
...

. . .
...

S(φ1, tm) · · · S(φN , tk)

 (4)

where:
fm = f1 + (m− 1)( fh − 1)/(M− 1) (5)

Γ(ϕn, fm) =

 Γ(φ1, f1) · · · Γ(φN , f1)
...

. . .
...

Γ(φ1, fm) · · · Γ(φN , fM)

 (6)

[Dk×m] =

 jω1t1 · · · jωmt1
...

. . .
...

jω1tm · · · jωmtk

 (7)

Here ωm denotes the angular velocity and k denotes the equal distant points. Subsequently,
the data in the S matrix was processed using the Delay-Multiply-and-Sum (DMAS) algorithm for
the clear reconstruction of the image [45]. The sharp image of the internal construction of the breast
phantom is shown in the processed image. Figure 14 shows the normalized magnitude of the proposed
antenna system for two scenarios, without the presence of a tumor inside the phantom and with
the tumor. A significant difference is noticed in the received pulses that the received pulse delay
is not equal for both scenarios. This indicates the presence of unwanted cells inside the phantom
for which the scattered signals cause delay at the receiving end. Since we are using cylindrically
symmetric homogeneous phantom (excluding the cyst) and the phantom is placed at the center of the
rotation axis, thus the skin reflections are nearly identical for all observations and any discrepancies
between the even and odd sets of data must be obtained due to scattered signals from the internal
structure of the phantom. The addition of uniform lossy material as the skin would mainly reduce
the magnitude of the scattered field. The phase shift caused by the thin layer of skin around the
phantom is similar to the shift caused the phantom material as the real part of their dielectric constants
are comparable. Thus a modified delay and sum algorithm were used as it mainly relies on the
phase of the scattered signal. In summary, the contribution of this skin material would be practically
constant with respect to the rotation. The image generated from the backscattering analysis is shown in
Figure 15a,b. Both the antennas act as a transducer. After analyzing the data with the presence of tumor
it is clear that the tumor is detected at the (40, 50) position in the phantom position in Figure 15a,b.
In Figure 15a, the tumor is identified with more red color concentration in the without skin layer
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scenario. On the other hand in Figure 15b, the tumor is identified as a blur because of the skin effect.
The presence of a tumor is identified as deep red due to the higher return loss of the tumor. The signal
cross through the normal breast tissue has no significant variation of the scattered signal while the
noticeable change is observed in the second scenario that ensures the presence of unwanted cells.
The proposed antenna and imaging system performance are better than those of recently reported
antipodal Vivaldi antenna and imaging systems. Some of the systems are the only simulation-based [15]
and some others have scarce imaging performance [17] or insufficient post-processing [5,35].
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Figure 15. Microwave imaging results of breast phantom. (a) Without skin layer with tumor and;
(b) with skin layer with a tumor inside the phantom.

The proposed antenna has been compared with other antennas in Table 4. Comparing the
proposed antenna with others, it is observed that, this antenna can be an eligible microwave imaging
sensor candidate in terms of compact size, broad frequency of operation, high gain, directional
radiation with high fidelity factor, homogenous phantom and imaging system development with
tumor detection which are highly desired specifications.
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Table 4. Comparison between different antennas with the proposed BSAVA.

Ref. No. Size (mm2)
λ0 × λ0

Type of Antenna Operating
Freq. (GHz) Gain (dBi) Applications Observations

[5] 63 × 51
0.52 × 0.42 Vivaldi 2.5–8.5 8.5 Microwave breast imaging Comparative large dimension, low gain at a lower

frequency and no measured imaging results

[17] 75 × 75
0.125 × 0.125 Vivaldi 0.5–4.5 7 Microwave radar imaging Unidirectional radiation with large dimension

and imaging results are not characterized

[39] 88 × 75
0.4λ × 0.5λ Vivaldi 1.54–7 8.5 Microwave breast imaging Complex feed structure with large size, but

directional radiation and good gain

[46] 100 × 53.19
0.66 × 0.35 Antipodal Vivaldi 2–27 7 Microwave imaging

Unidirectional properties obtained. Dimension is
very large. Unavailability of the measured
imaging results

[47] 110.3 × 100 Lens-loaded
Vivaldi 1–14 <3 dB at lower

freq. (2 GHz) Microwave imaging Large dimension. Low Gain at lower frequency
with omnidirectional radiation

Proposed 40 × 40
0.40 × 0.40

Bbalanced slotted
antipodal Vivaldi

Antenna
3.01–11 7.1 Microwave breast imaging

Compact dimension with broad impedance
bandwidth, a directional radiation pattern with
high gain, high fidelity factor, a homogenous
phantom with skin layer and imaging system
development with tumor detection
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8. Conclusions

A complete and compact medical imaging system with a BSAVA sensor is developed. The design
and prototyping of a compact modified Vivaldi antenna sensor are done for testing the performance of
the antenna sensor in microwave imaging systems. After the proper characterization, both the
frequency domain and time domain behavior of the antenna sensor is verified. The microwave
antenna sensor has a fractional bandwidth of 114% from 3.01 to 11 GHz with directional radiation
pattern, higher gain, and efficiency. For enhancing the bandwidth, gain, directional radiation pattern
and higher efficiency the different antenna sensor parameters are optimized including slots on
both patch and ground. The antenna sensor performance of both frequency domain, time domain
scenarios and reasonable Q factor with NFD are also investigated. After the fabrication of a realistic
homogenous breast phantom, two prototypes are used for breast phantom measurement systems for
detecting a tumor inside a homogenous breast phantom. The system is developed using a moving
mechanical setup rotated by a stepper motor and controlled by Arduino-Uno for collecting data
in the breast phantom. A customized system with a transducer, data collection model, and image
reconstruction method has been developed based on MATLAB. There is a remarkable variation of the
scattered signal is the key point to locate the unwanted cells inside the human breast. After proper
analysis of these changes, the decision can be made that the proposed system can be used in localizing
tumor cells among the healthy tissue and the system can be used as an early detection approach for
unwanted tumors.
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Appendix A. Time Domain Performance

The time domain performance of the BSAVA at three different scenarios of face to face,
side by side X and side by side Y at 250 mm distant is presented in Figure A1a–c. In face to face
operation, the received waveforms are the same as the transmitted pulses. Because of being a highly
directive antenna, the antenna can send short pulse with very low distortion at the minimum timing.
For side by side X and side by side Y scenarios the received waveforms slightly different from the
actual waveforms. For directional radiation the side radiation slightly distorted and the mismatch is
observed between the transmitted and received signals. A key factor is known as the fidelity factor
(FF) [48] is also calculated to validate the correspondence between the transmitter (TX) and received
(RX) signals:

F = max

+∞∫
−∞

m(t)n(t− τ)dt√
+∞∫
−∞

∣∣∣m(t)2
∣∣∣dt

+∞∫
−∞

∣∣∣n(t)2
∣∣∣dt

(A1)

where, m(t) and n(t) represents the TX and RX signals, respectively. The fidelity factor is calculated in
MATLAB by using this equation. The fidelity factor is 0.94, 0.85 and 0.98 for the face to face,
side by side X and side by side Y position, respectively. The value to fidelity factor of the proposed
BSAVA is higher than that of other recently published Vivaldi antennas. The higher value of fidelity
factor ensures lower distortion of the transmitted signal that is a prerequisite for microwave imaging.
The signal phase distortion is represented by the group delay. The group delay is measured from the
negative derivatives of the phase response against frequency and presented in Figure A1d. Among the
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three set up the group delay of side by side, Y is less than both the face to face and side by side X.
This is almost constant over the frequency, as a result, this setup is recommended for microwave
imaging systems.
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Appendix B. NFD and Q Factor Analysis

With respect to the physical dimension of the antenna, the minimum quality factor can be
achieved by using the equation Qlb = ηQ [49], where, k = 2π

λ and a denotes minimum sphere radius
enclosed to the antenna. The higher bound of the radiation efficiency is:

(Bηr)ub =
1√
2

[
1

ka
+

1
k3a3

]−1
(A2)

The Qm and (Bηr)ub for different theoretical values of ka is shown in Figure A2. The antenna
calculated value of ka = 1.78 for the 1st resonant frequency. From the ideal curve, it is noticed that the
minimum limit of Qm is 0.59 and (Bηr)ub = 0.81.

The quality factor of the prototype is estimated through:

Qa =
2
√
β

B
(A3)

where: √
β =

s− 1
2
√

s
≤ 1 (A4)

Here s = 2 is considered as the maximum accepted VSWR. The achieved Qa of the anticipated
antenna is 0.56 and (Bηr)ub = 0.80 which indicate that the theoretical and calculated value is very close.
This verifies that the antenna design is optimum.
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The NFD can be computed by using the formula presented in [50]. The NFD factor is the
proportion of the power radiated inside the front side (Pf) and through the surface of the phantom (PT):

NFD =
Pf
PT

(A5)

Figure A3 illustrates the NFD of the proposed antenna with a breast phantom. It is observed that
about 67% of the total power is emitted through the front side of the breast tissue.
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