A Review of Sharp-Switching Band-Modulation Devices
Abstract
:1. Introduction
1.1. Electrostatic Doping for Reconfigurable Devices
1.2. Principle of Band-Modulation
1.3. Device Variants
1.4. Implementation in FD-SOI Technology
2. Basic Characteristics
2.1. Operation in DC Mode
2.2. Transient Operation
3. Operating Principles and Models
3.1. Band-Modulation Mechanism
3.2. Regions of Operation
3.3. Regional Model
3.4. Switching Voltages
3.5. Compact Model V-I Formulation
4. Sharp-Switching Performance
5. Alternative Applications of Sharp Switching
5.1. Static Memory Cell: Operation as Capacitorless SRAM
5.2. Dynamic Memory Cell: Operation as Capacitorless DRAM
5.3. Protection against Electrostatic Discharge
5.4. Photo-Detection
5.5. Bio-Sensing
6. Reconfigurable Sharp-Switching Modes
6.1. Impact Ionization MOSFET (I-MOS)
6.2. TFET
6.3. Esaki Diode
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- See the 2021 International Roadmap for Devices and Systems, Specifically the More Moore Section. Available online: https://irds.ieee.org/images/files/pdf/2021/2021IRDS_MM.pdf (accessed on 7 December 2021).
- Taur, Y.; Ning, T.H. Fundamentals of Modern VLSI Devices, 3rd ed.; Cambridge University. Press: Cambridge, UK, 2021. [Google Scholar]
- Cristoloveanu, S. Fully Depleted Silicon-On-Insulator: Nanodevices, Mechanisms and Characterization; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Beckers, A.; Jazaeri, F.; Enz, C. Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K. IEEE J. Electron Devices Soc. 2018, 6, 1007–1018. [Google Scholar] [CrossRef]
- Incandela, R.M.; Song, L.; Homulle, H.; Charbon, E.; Vladimirescu, A.; Sebastiano, F. Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures. J. Electron Device Soc. 2018, 6, 996–1006. [Google Scholar] [CrossRef]
- Zaslavsky, A.; Richter, C.A.; Shrestha, P.R.; Hoskins, B.D.; Le, S.T.; Madhavan, A.; McClelland, J.M. Impact ionization-induced bistability in CMOS transistors at cryogenic temperatures for capacitorless memory applications. Appl. Phys. Lett. 2021, 119, 043501. [Google Scholar] [CrossRef]
- Cristoloveanu, S.; Wan, J.; Zaslavsky, A. A review of sharp-switching devices for ultra-low power applications. J. Electron Device Soc. 2016, 4, 215–226. [Google Scholar] [CrossRef]
- Antonov, R.D.; Johnson, A.T. Subband Population in a Single-Wall Carbon Nanotube Diode. Phys. Rev. Lett. 1999, 83, 3274–3276. [Google Scholar] [CrossRef][Green Version]
- Hueting, R.J.E.; Rajasekharan, B.; Salm, C.; Schmitz, J. The Charge Plasma P-N Diode. IEEE Electron Device Lett. 2008, 29, 1367–1369. [Google Scholar] [CrossRef][Green Version]
- Heinzig, A.; Slesazeck, S.; Kreupl, F.; Mikolajick, T.; Weber, W.M. Reconfigurable Silicon Nanowire Transistors. Nano Lett. 2011, 12, 119. [Google Scholar] [CrossRef]
- Cristoloveanu, S.; Lee, K.H.; Park, H.; Parihar, M.S. The concept of electrostatic doping and related devices. Solid-State Electron. 2019, 155, 32–43. [Google Scholar] [CrossRef]
- Cristoloveanu, S.; Lee, K.H.; Bawedin, M. A reconfigurable silicon-on-insulator diode with tunable electrostatic doping. J. Appl. Phys. 2017, 122, 084502. [Google Scholar] [CrossRef]
- Wan, J.; Le Royer, C.; Zaslavsky, A.; Cristoloveanu, S. A Compact Capacitor-Less High-Speed DRAM Using Field Effect-Controlled Charge Regeneration. IEEE Electron Device Lett. 2011, 33, 179–181. [Google Scholar] [CrossRef]
- Wan, J.; Cristoloveanu, S.; Le Royer, C.; Zaslavsky, A. A feedback silicon-on-insulator steep switching device with gate-controlled carrier injection. Solid-State Electron. 2012, 76, 109–111. [Google Scholar] [CrossRef]
- Sheikhian, I.; Raissi, F. High-speed digital family using field effect diode. Electron. Lett. 2003, 39, 345. [Google Scholar] [CrossRef]
- Salman, A.A.; Beebe, S.G.; Emam, M.; Pelella, M.M.; Ioannou, D.E. Field Effect Diode (FED): A novel device for ESD protection in deep sub-micron SOI technologies. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–13 December 2006. [Google Scholar]
- El Dirani, H.; Fonteneau, P.; Solaro, Y.; Ferrari, P.; Cristoloveanu, S. Novel FDSOI band-modulation device: Z2-FET with dual ground planes. In Proceedings of the 46th European Solid-State Device Research Conference (ESSDERC’2016), Lausanne, Switzerland, 12–15 September 2014; pp. 210–213. [Google Scholar]
- Solaro, Y.; Fonteneau, P.; Legrand, C.-A.; Marin-Cudraz, D.; Passieux, J.; Guyader, P.; Clement, L.-R.; Fenouillet-Beranger, C.; Ferrari, P.; Cristoloveanu, S. Innovative ESD protections for UTBB FD-SOI technology. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 9–11 December 2013; pp. 180–182. [Google Scholar]
- Solaro, Y.; Fonteneau, P.; Legrand, C.; Fenouillet-Beranger, C.; Ferrari, P.; Cristoloveanu, S. A sharp-switching device with free surface and buried gates based on band modulation and feedback mechanisms. Solid-State Electron. 2015, 116, 8–11. [Google Scholar] [CrossRef]
- Weber, O.; Josse, E.; Andrieu, F.; Cros, A.; Richard, E.; Perreau, P.; Baylac, E.; Degors, N.; Gallon, C.; Perrin, E.; et al. 14nm FDSOI technology for high speed and energy efficient applications. In Proceedings of the 2014 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 9–12 June 2014; pp. 1–2. [Google Scholar] [CrossRef]
- Planes, N.; Weber, O.; Barral, V.; Haendler, S.; Noblet, D.; Croain, D.; Bocat, M.; Sassoulas, P.-O.; Federspiel, X.; Cros, A.; et al. 28nm FDSOI technology platform for high-speed low-voltage digital applications. In Proceedings of the 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 12–14 June 2012; pp. 133–134. [Google Scholar] [CrossRef]
- Cristoloveanu, S.; Lee, K.; Parihar, M.; El Dirani, H.; Lacord, J.; Martinie, S.; Le Royer, C.; Barbe, J.-C.; Mescot, X.; Fonteneau, P.; et al. A review of the Z2 -FET 1T-DRAM memory: Operation mechanisms and key parameters. Solid-State Electron. 2018, 143, 10–19. [Google Scholar] [CrossRef][Green Version]
- Cristoloveanu, S.; Athanasiou, S.; Bawedin, M.; Galy, P. Evidence of Supercoupling Effect in Ultrathin Silicon Layers Using a Four-Gate MOSFET. IEEE Electron Device Lett. 2017, 38, 157–159. [Google Scholar] [CrossRef]
- Navarro, C.; Bawedin, M.; Andrieu, F.; Sagnes, B.; Martinez, F.; Cristoloveanu, S. Supercoupling effect in short-channel ultrathin fully depleted silicon-on-insulator transistors. J. Appl. Phys. 2015, 118, 184504. [Google Scholar] [CrossRef]
- Parihar, M.S.; Lee, K.H.; Park, H.J.; Lacord, J.; Martinie, S.; Barbé, J.C.; Xu, Y.; El Dirani, H.; Taur, Y.; Cristoloveanu, S.; et al. Insight into carrier lifetime impact on band-modulation devices. Solid-State Electron. 2018, 143, 41–48. [Google Scholar] [CrossRef]
- Wan, J.; Cristoloveanu, S.; le Royer, C.; Zaslavsky, A. A systematic study of the sharp-switching Z2-FET device: From mechanism to modeling and compact memory applications. Solid-State Electron. 2013, 90, 2–11. [Google Scholar] [CrossRef]
- El Dirani, H.; Solaro, Y.; Fonteneau, P.; Legrand, C.-A.; Marin-Cudraz, D.; Golanski, D.; Ferrari, P.; Cristoloveanu, S. A band-modulation device in advanced FDSOI technology: Sharp switching characteristics. Solid-State Electron. 2016, 125, 103–110. [Google Scholar] [CrossRef]
- Taur, Y.; Lacord, J.; Parihar, M.S.; Wan, J.; Martinie, S.; Lee, K.; Bawedin, M.; Barbe, J.-C.; Cristoloveanu, S. A comprehensive model on field-effect pnpn devices (Z2-FET). Solid-State Electron. 2017, 134, 1–8. [Google Scholar] [CrossRef]
- Martinie, S.; Lacord, J.; Lee, K.; Bawedin, M.; Cristoloveanu, S. Pragmatic Z2-FET compact model including DC and 1T-DRAM memory operation. Solid-State Electron. 2021, 179, 107960. [Google Scholar] [CrossRef]
- Gatard, E. Analyse des Phénomènes Physiques dans les Diodes p-i-n: Contribution à la Modélisation Électrothermique pour les Applications de Puissance RF et Hyperfréquences. Ph.D. Thesis, University of Limoges, Limoges, France, 2006. [Google Scholar]
- Rozeau, O.; Jaud, M.-A.; Poiroux, T.; Benosman, M. Surface potential based model of ultra-thin fully depleted SOI MOSFET for IC simulations. In Proceedings of the SOI Conference (SOI), Tempe, AZ, USA, 3–6 October 2011. [Google Scholar]
- Lee, K.-H.; El Dirani, H.; Fonteneau, P.; Bawedin, M.; Cristoloveanu, S. Sharp Logic Switch Based on Band Modulation. IEEE Electron Device Lett. 2019, 40, 1852–1855. [Google Scholar] [CrossRef]
- El Dirani, H.; Solaro, Y.; Fonteneau, P.; Ferrari, P.; Cristoloveanu, S. Properties and mechanisms of Z2-FET at variable temperature. Solid-State Electron. 2016, 115, 201–206. [Google Scholar] [CrossRef]
- Navarro, C.; Lacord, J.; Parihar, M.S.; Adamu-Lema, F.; Duan, M.; Rodriguez, N.; Cheng, B.; El Dirani, H.; Barbe, J.C.; Fonteneau, P.; et al. Extended analysis of the Z2-FET: Operation as capacitorless eDRAM. IEEE Trans. Electron. Devices 2017, 64, 4486–4491. [Google Scholar] [CrossRef]
- Bawedin, M.; Cristoloveanu, S.; Flandre, D.; Udrea, F. Dynamic body potential variation in FD SOI MOSFETs operated in deep non-equilibrium regime: Model and applications. Solid-State Electron. 2010, 54, 104–114. [Google Scholar] [CrossRef]
- Bawedin, M.; Cristoloveanu, S.; Hubert, A.; Park, K.-H.; Martinez, F. Floating Body SOI Memory: The Scaling Tournament. In Semiconductor-On-Insulator Materials for Nanoelectronics Applications; Springer: Heidelberg, Germany, 2011; pp. 393–421. [Google Scholar]
- Lacord, J.; Parihar, M.S.; Navarro, C.; Wakam, F.T.; Bawedin, M.; Cristoloveanu, S.; Gamiz, F.; Barbe, J.-C. MSDRAM, A2RAM and Z2-FET performance benchmark for 1T-DRAM applications. In Proceedings of the 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Austin, TX, USA, 24–26 September 2018; pp. 198–201. [Google Scholar] [CrossRef]
- El Dirani, H.; Lee, K.H.; Parihar, M.S.; Lacord, J.; Martinie, S.; Barbe, J.C.; Mescot, X.; Fonteneau, P.; Broquin, J.E.; Ghibaudo, G.; et al. Ultra-low power 1T-DRAM in FDSOI technology. Microelectron. Eng. 2017, 178, 245–249. [Google Scholar] [CrossRef]
- Marquez, C.; Navarro, S.; Navarro, C.; Salazar, N.; Galy, P.; Cristoloveanu, S.; Gamiz, F. Temperature and gate leakage influence on the Z2-FET memory operation. In Proceedings of the 49th European Solid-State Device Research Conference (ESSDERC), Cracow, Poland, 23–26 September 2019. [Google Scholar]
- Duan, M.; Navarro, C.; Cheng, B.; Adamu-Lema, F.; Wang, X.; Georgiev, V.P.; Gamiz, F.; Millar, C.; Asenov, A. Thorough understanding of retention time of Z2-FET memory operation. IEEE Trans. Electron. Devices 2019, 66, 383–388. [Google Scholar] [CrossRef]
- Kwon, S.; Navarro, C.; Gamiz, F.; Galy, P.; Cristoloveanu, S.; Kim, Y.-T.; Ahn, J. Improved Retention Characteristics of Z2-FET Employing Half Back-Gate Control. IEEE Trans. Electron Devices 2021, 68, 1041–1044. [Google Scholar] [CrossRef]
- Parihar, M.S.; Lee, K.H.; El Dirani, H.; Navarro, C.; Lacord, J.; Martinie, S.; Barbe, J.-C.; Fonteneau, P.; Galy, P.; Le Royer, C.; et al. Low-power Z2-FET capacitorless 1T-DRAM. In Proceedings of the International Memory Workshop, Monterey, CA, USA, 14–17 May 2017. [Google Scholar]
- Navarro, C.; Marquez, C.; Navarro, S.; Lozano, C.; Kwon, S.; Kim, Y.-T.; Gamiz, F. Simulation Perspectives of Sub-1V Single-Supply Z2-FET 1T-DRAM Cells for Low-Power. IEEE Access 2019, 7, 40279–40284. [Google Scholar] [CrossRef]
- Navarro, S.; Navarro, C.; Marquez, C.; Salazar, N.; Galy, P.; Cristoloveanu, S.; Gamiz, F. Reliability Study of Thin-Oxide Zero-Ionization, Zero-Swing FET 1T-DRAM Memory Cell. IEEE Electron Device Lett. 2019, 40, 1084–1087. [Google Scholar] [CrossRef]
- CMarquez, C.; Navarro, C.; Navarro, S.; Padilla, J.L.; Donetti, L.; Sampedro, C.; Galy, P.; Kim, Y.-T.; Gamiz, F. On the Low-Frequency Noise Characterization of Z2-FET Devices. IEEE Access 2019, 7, 42551–42556. [Google Scholar] [CrossRef]
- Adamu-Lema, F.; Duan, M.; Georgiev, V.; Asenov, P.A. A carrier lifetime sensitivity probe based on transient capacitance: A novel method to characterize lifetime in Z2-FET. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices, SISPAD, Austin, TX, USA, 24–26 September 2018. [Google Scholar]
- Navarro, C.; Navarro, S.; Marquez, C.; Padilla, J.L.; Galy, P.; Gamiz, F. 3-D TCAD Study of the Implications of Channel Width and Interface States on FD-SOI Z2-FETs. IEEE Trans. Electron Devices 2019, 66, 2513–2519. [Google Scholar] [CrossRef]
- Navarro, C.; Duan, M.; Parihar, M.S.; Adamu-Lema, F.; Coseman, S.; Lacord, J.; Lee, K.; Sampedro, C.; Cheng, B.; El Dirani, H.; et al. Z2-FET as capacitor-less eDRAM cell for high-density integration. IEEE Trans. Electron Devices 2017, 64, 4904–4909. [Google Scholar] [CrossRef][Green Version]
- Wan, J.; Le Royer, C.; Zaslavsky, A.; Cristoloveanu, S. Progress in Z2-FET 1T-DRAM: Retention time, writing modes, selective array operation, and dual bit storage. Solid-State Electron. 2013, 84, 147–154. [Google Scholar] [CrossRef]
- Navarro, S.; Navarro, C.; Marquez, C.; El Dirani, H.; Galy, P.; Bawedin, M.; Pickering, A.; Cristoloveanu, S.; Gamiz, F. Experimental Demonstration of Operational Z2-FET Memory Matrix. IEEE Electron Device Lett. 2018, 39, 660–663. [Google Scholar] [CrossRef][Green Version]
- Kwon, S.; Navarro, C.; Galy, P.; Cristoloveanu, S.; Gamiz, F.; Ahn, J.; Kim, Y.T. Operations of zero impact ionization, zero subthreshold swing FET matrix without selectors. IEEE Electron Device Lett. 2020, 41, 361–364. [Google Scholar] [CrossRef]
- Kwon, S.; Navarro, C.; Gamiz, F.; Cristoloveanu, S.; Kim, Y.-T.; Ahn, J. Memory Operation of Z2-FET Without Selector at High Temperature. IEEE J. Electron Devices Soc. 2021, 9, 658–662. [Google Scholar] [CrossRef]
- Solaro, Y.; Fonteneau, P.; Legrand, C.A.; Marin-Cudraz, D.; Passieux, J.; Guyader, P.; Clement, L.R.; Fenouillet-Beranger, C.; Ferrari, P.; Cristoloveanu, S. Thin body ESD protections in 28nm UTBB-FDSOI: From static to transient behavior. In Proceedings of the Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), Tucson, AZ, USA, 7–12 September 2014. [Google Scholar]
- Liu, J.; Cao, X.Y.; Lu, B.R.; Chen, Y.F.; Zaslavsky, A.; Cristoloveanu, S.; Wan, J. Dynamic coupling effect in Z2-FET and its application for photodetection. IEEE J. Electron Devices Soc. 2019, 7, 846–854. [Google Scholar] [CrossRef]
- Liu, J.; Cao, X.Y.; Lu, B.R.; Chen, Y.F.; Zaslavsky, A.; Cristoloveanu, S.; Bawedin, M.; Wan, J. A new photodetector on SOI. In Proceedings of the IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Qingdao, China, 31 October–3 November 2018; pp. 1–4. [Google Scholar]
- Gopalakrishnan, K.; Griffin, P.; Plummer, J. I-MOS: A novel semiconductor device with a subthreshold slope lower than kT/q. In Proceedings of the Tech. Dig. IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 8–11 December 2002; pp. 289–292. [Google Scholar]
- Mayer, F.; le Royer, C.; le Carval, G.; Tabone, C.; Clavelier, L.; Deleonibus, S. Comparative study of the fabricated and simulated impact ionization MOS (IMOS). Solid-State Electron. 2007, 51, 579–584. [Google Scholar] [CrossRef]
- Savio, A.; Monfray, S.; Charbuillet, C.; Skotnicki, T. On the Limitations of Silicon for I-MOS Integration. IEEE Trans. Electron Devices 2009, 56, 1110–1117. [Google Scholar] [CrossRef]
- Sarkar, D.; Singh, N.; Banerjee, K. A Novel Enhanced Electric-Field Impact-Ionization MOS Transistor. IEEE Electron Device Lett. 2010, 31, 1175–1177. [Google Scholar] [CrossRef]
- Lu, H.; Seabaugh, A. Tunnel Field-Effect Transistors: State-of-the-Art. J. Electron Devices Soc. 2014, 2, 44–49. [Google Scholar] [CrossRef]
- Kim, S.H.; Kam, H.; Hu, C.; Liu, T.-J.K. Germanium-source tunnel field effect transistors with record high ION/IOFF. In Proceedings of the Symposium on VLSI Technology, Honolulu, HI, USA, 15–17 June 2009; pp. 178–179. [Google Scholar]
- Le, S.T.; Jannaty, P.; Luo, X.; Zaslavsky, A.; Perea, D.E.; Dayeh, S.; Picraux, S.T. Axial SiGe Heteronanowire Tunneling Field-Effect Transistors. Nano Lett. 2012, 12, 5850–5855. [Google Scholar] [CrossRef]
- Cutaia, D.; Moselund, K.E.; Borg, M.; Schmid, H.; Gignac, L.; Breslin, C.M.; Karg, S.; Uccelli, E.; Riel, H. Vertical InAs-Si gate-all-around tunnel FETs integrated on Si using selective epitaxy in nanotube templates. IEEE J. Electron Devices Soc. 2015, 3, 176–183. [Google Scholar] [CrossRef]
- Convertino, C.; Zota, C.B.; Schmid, H.; Caimi, D.; Czornomaz, L.; Ionescu, A.M.; Moselund, K.E. A hybrid III–V tunnel FET and MOSFET technology platform integrated on silicon. Nat. Electron. 2021, 4, 162–170. [Google Scholar] [CrossRef]
- Memisevic, E.; Svensson, J.; Hellenbrand, M.; Lind, E.; Wernersson, L.-E. Vertical InAs/GaAsSb/GaSb tunneling field-effect transistor on Si with S = 48 mV/decade and Ion = 10 μA/μm for Ioff = 1 nA/μm at Vds = 0.3 V. IEEE IEDM 2016, 19.1.1–19.1.4. [Google Scholar] [CrossRef][Green Version]
- Wan, J.; Zaslavsky, A.; Le Royer, C.; Cristoloveanu, S. Novel Bipolar-Enhanced Tunneling FET with Simulated High On-Current. IEEE Electron Device Lett. 2013, 34, 24–26. [Google Scholar] [CrossRef]
- Esaki, L. Discovery of the tunnel diode. IEEE Trans. Electron Devices 1976, 23, 644–647. [Google Scholar] [CrossRef]
- Berger, P.R.; Ramesh, A. Negative Differential Resistance Devices and Circuits. In Comprehensive Semiconductor Science Technology: Online Version; Elsevier: Amsterdam, The Netherlands, 2011; Volume 5, pp. 176–241. [Google Scholar]
- Lee, K.-H.; Cristoloveanu, S. Esaki Diode in Undoped Silicon Film. IEEE Electron Device Lett. 2019, 40, 1346–1348. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristoloveanu, S.; Lacord, J.; Martinie, S.; Navarro, C.; Gamiz, F.; Wan, J.; Dirani, H.E.; Lee, K.; Zaslavsky, A. A Review of Sharp-Switching Band-Modulation Devices. Micromachines 2021, 12, 1540. https://doi.org/10.3390/mi12121540
Cristoloveanu S, Lacord J, Martinie S, Navarro C, Gamiz F, Wan J, Dirani HE, Lee K, Zaslavsky A. A Review of Sharp-Switching Band-Modulation Devices. Micromachines. 2021; 12(12):1540. https://doi.org/10.3390/mi12121540
Chicago/Turabian StyleCristoloveanu, Sorin, Joris Lacord, Sébastien Martinie, Carlos Navarro, Francisco Gamiz, Jing Wan, Hassan El Dirani, Kyunghwa Lee, and Alexander Zaslavsky. 2021. "A Review of Sharp-Switching Band-Modulation Devices" Micromachines 12, no. 12: 1540. https://doi.org/10.3390/mi12121540