Controlling the Emission Spectrum of Binary Emitting Polymer Hybrids by a Systematic Doping Strategy via Förster Resonance Energy Transfer for White Emission
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Optical Properties
3.2. Energy Transfer Parameters
3.3. Tuning the Emission Colors via FRET
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karzazi, Y. Organic light emitting diodes: Devices and applications. J. Mater. Environ. Sci. 2014, 5, 1–12. [Google Scholar]
- Aleksandrova, M. Specifics and Challenges to Flexible Organic Light-Emitting Devices. Adv. Mater. Sci. Eng. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kido, J.; Kimura, M.; Nagai, K. Multilayer White Light-Emitting Organic Electroluminescent Device. Science 1995, 267, 1332–1334. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Huang, J.; Li, C.; Liu, S.; Li, Y.; Wang, Y.; Shen, J. Organic multiple-quantum well white electroluminescent devices. Synth. Met. 1999, 1, 71–74. [Google Scholar]
- Deshpande, R.S.; Bulović, V.; Forrest, S.R. White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer. Appl. Phys. Lett. 1999, 75, 888–890. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, Y.; Zhao, Y.; Lin, Y.; Ruan, C.; Liu, S.; Fei, T.; Ma, Y.; Cheng, Y. White organic light-emitting devices with a phosphorescent multiple emissive layer. Appl. Phys. Lett. 2006, 89, 43504. [Google Scholar] [CrossRef]
- Shim, H.K.; Kang, I.N.; Jang, M.S.; Zyung, T.; Jung, S.D. Electroluminescence of Polymer Blend Composed of Conjugated and Nonconjugated Polymers. White-Light-Emitting Diode. Macromology 1997, 30, 7749–7752. [Google Scholar]
- Granström, M.; Inganäs, O. White light emission from a polymer blend light emitting diode. Appl. Phys. Lett. 1996, 68, 147–149. [Google Scholar] [CrossRef]
- Kido, J.; Shionoya, H.; Nagai, K. Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly (N-vinylcarbazole). Appl. Phys. Lett. 1995, 67, 2281–2283. [Google Scholar] [CrossRef]
- Lee, T.-W.; Park, J.H.; Park, O.O.; Lee, J.; Kim, Y.C. A systematic doping strategy to control the emission spectrum of ternary luminescent polymer blends for white emission. Opt. Mater. 2007, 30, 486–491. [Google Scholar] [CrossRef]
- Buckley, A.; Rahn, M.; Hill, J.; Gonzalez, J.C.; Fox, A.M.; Bradley, D. Energy transfer dynamics in polyfluorene-based polymer blends. Chem. Phys. Lett. 2001, 339, 331–336. [Google Scholar] [CrossRef]
- Förster, T. Fluoreszenz Organischer Verbindungen; Vandenhoeck & Ruprecht: Göttingen, Germany, 1982. [Google Scholar]
- Allen, N.S. Photochemistry and Photophysics of Polymeric Materials; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Al-Asbahi, B.A.; Qaid, S.M.; Jumali, M.H.H.; AlSalhi, M.S.; Aldwayyan, A.S. Long-range dipole–dipole energy transfer enhancement via addition of SiO2/TiO2 nanocomposite in PFO/MEH-PPV hybrid thin films. J. Appl. Polym. Sci. 2019, 136, 47845. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Singapore, 2006. [Google Scholar]
- Cerullo, G.; Stagira, S.; Zavelani-Rossi, M.; De Silvestri, S.; Virgili, T.; Lidzey, D.; Bradley, D. Ultrafast Förster transfer dynamics in tetraphenylporphyrin doped poly(9,9-dioctylfluorene). Chem. Phys. Lett. 2001, 335, 27–33. [Google Scholar] [CrossRef]
- Virgili, T.; Lidzey, D.; Bradley, D. Efficient Energy Transfer from Blue to Red in Tetraphenylporphyrin-Doped Poly(9,9-dioctylfluorene) Light-Emitting Diodes. Adv. Mater. 1999, 12, 58–62. [Google Scholar] [CrossRef]
- Al-Asbahi, B.; Alsalhi, M.; Al-Dwayyan, A.; Jumali, M.H. Förster-type energy transfer mechanism in PF2/6 to MEH-PPV conjugated polymers. J. Lumin. 2012, 132, 386–390. [Google Scholar] [CrossRef]
- Cossiello, R.F.; Susman, M.D.; Aramendía, P.F.; Atvars, T.D. Study of solvent-conjugated polymer interactions by polarized spectroscopy: MEH–PPV and Poly(9,9′-dioctylfluorene-2,7-diyl). J. Lumin. 2010, 130, 415–423. [Google Scholar] [CrossRef]
- List, E.; Creely, C.; Leising, G.; Schulte, N.; Schlüter, A.; Scherf, U.; Müllen, K.; Graupner, W. Excitation energy migration in highly emissive semiconducting polymers. Chem. Phys. Lett. 2000, 325, 132–138. [Google Scholar] [CrossRef]
- Förster, T. Transfer Mechanisms of Electronic Excitation Energy. Radiat. Res. Suppl. 1960, 2, 326. [Google Scholar] [CrossRef]
- Shaheen, S.E.; Kippelen, B.; Peyghambarian, N.; Wang, J.-F.; Anderson, J.D.; Mash, E.A.; Lee, P.A.; Armstrong, N.; Kawabe, Y. Energy and charge transfer in organic light-emitting diodes: A soluble quinacridone study. J. Appl. Phys. 1999, 85, 7939–7945. [Google Scholar] [CrossRef]
- Mattoussi, H.; Murata, H.; Merritt, C.D.; Iizumi, Y.; Kido, J.; Kafafi, Z.H. Photoluminescence quantum yield of pure and molecularly doped organic solid films. J. Appl. Phys. 1999, 86, 2642–2650. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A. Dual Förster resonance energy transfer in ternary PFO/MEH-PPV/F7GA hybrid thin films for white organic light-emitting diodes. Dyes Pigm. 2021, 186, 109011. [Google Scholar] [CrossRef]
- Bhat, V.S.; Kapatkar, S.B.; Ayachit, N.H.; Naik, I.; Murari, M.S. Doping-induced modulation of optical properties of PFO/PMMA composite films. Polym. Bull. 2021, 78, 4453–4472. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A.; Qaid, S.M.; Ghaithan, H.M.; Aldwayyan, A.S. Triplet Energy Transfer Mechanism of Ternary Organic Hybrid Thin Films of PFO/MEH-PPV/CsPbBr3 Perovskite Quantum Dots. Nanomaterials 2020, 10, 2094. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A.; Jumali, M.H.H.; Yap, C.C.; Salleh, M.M.; AlSalhi, M. Inhibition of dark quenching by TiO2 nanoparticles content in novel PFO/Fluorol 7GA hybrid: A new role to improve OLED performance. Chem. Phys. Lett. 2013, 570, 109–112. [Google Scholar] [CrossRef]
- Soman, A.; Sajeev, A.K.; Rajeev, K.; KN, N.U. Reversible shift from excitonic to excimer emission in fluorescent organic light-emitting diodes: Dependence on deposition parameters and electrical bias. ACS Omega 2020, 5, 1698–1707. [Google Scholar] [CrossRef] [Green Version]
- Al-Bati, S.; Jumali, M.H.H.; Al-Asbahi, B.A.; Ibtehaj, K.; Yap, C.C.; Qaid, S.M.H.; Ghaithan, H.M.; Farooq, W.A. Improving Photophysical Properties of White Emitting Ternary Conjugated Polymer Blend Thin Film via Additions of TiO2 Nanoparticles. Polymer 2020, 12, 2154. [Google Scholar] [CrossRef] [PubMed]
- Al-Asbahi, B.A. Energy transfer mechanism and optoelectronic properties of (PFO/TiO2)/Fluorol 7GA nanocomposite thin films. Opt. Mater. 2017, 72, 644–649. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A.; Jumali, M.H.H.; Yap, C.C.; Flaifel, M.H.; Salleh, M.M. Photophysical properties and energy transfer mechanism of PFO/Fluorol 7GA hybrid thin films. J. Lumin. 2013, 142, 57–65. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A.; Qaid, S.M.; Aldwayyan, A.S. Effect of Donor-Acceptor Concentration Ratios on Non-Radiative Energy Transfer in Zero-Dimensional Cs4PbBr6 Perovskite/MEH-PPV Nanocomposite Thin Films. Polymers 2020, 12, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweitzer, C.; Schmidt, R. Physical Mechanisms of Generation and Deactivation of Singlet Oxygen. Chem. Rev. 2003, 103, 1685–1758. [Google Scholar] [CrossRef]
- Wu, P.; Brand, L. Resonance Energy Transfer: Methods and Applications. Anal. Biochem. 1994, 218, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Kumar, S.; Chandrasekaran, Y.; Patil, S. Maleimide–based donor-π-acceptor-π-donor derivative for efficient organic light-emitting diodes. Org. Electron. 2016, 38, 180–185. [Google Scholar] [CrossRef]
In PFO/MEH-PPV Binary Hybrid | In PFO/MDMO-PPV–DMP Binary Hybrid | |||||||
---|---|---|---|---|---|---|---|---|
Acceptor Content (wt.%) | MEH-PPV Conc. (mg/mL) | Knr (ns)−1 | J(λ) × 1015 (M−1.cm−1.nm4) | R0 (Å) | MDMO-PPV–DMP Conc. (mg/mL) | Knr (ns)−1 | J(λ) × 1015 (M−1.cm−1.nm4) | R0 (Å) |
0.1 | 0.375 | 9.76 | 284 | 111 | 0.15 | 8.843 | 329 | 113 |
0.3 | 1.125 | 11.69 | 94.6 | 92.5 | 0.45 | 8.564 | 38.0 | 79.4 |
0.5 | 1.875 | 7.77 | 0.674 | 40.6 | 0.75 | 9.082 | 9.5 | 63.1 |
1.0 | 3.75 | 7.36 | 5.34 | 57.3 | 1.5 | 11.76 | 5.31 | 57.2 |
2.0 | 7.75 | 23.02 | 0.128 | 30.8 | 3.1 | 13.47 | 3.24 | 52.7 |
3.0 | 11.5 | 34.48 | 0.355 | 36.5 | 4.6 | 39.55 | 4.80 | 56.3 |
5.0 | 19.75 | 69.69 | 5.97 | 58.4 | 7.9 | 112.6 | 6.6 | 59.3 |
10 | 41.75 | 142.3 | 18.8 | 70.6 | 16.7 | 401.3 | 50.7 | 83.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Asbahi, B.A.; AlSalhi, M.S.; Fatehmulla, A.; Jumali, M.H.H.; Qaid, S.M.H.; Mujamammi, W.M.; Ghaithan, H.M. Controlling the Emission Spectrum of Binary Emitting Polymer Hybrids by a Systematic Doping Strategy via Förster Resonance Energy Transfer for White Emission. Micromachines 2021, 12, 1371. https://doi.org/10.3390/mi12111371
Al-Asbahi BA, AlSalhi MS, Fatehmulla A, Jumali MHH, Qaid SMH, Mujamammi WM, Ghaithan HM. Controlling the Emission Spectrum of Binary Emitting Polymer Hybrids by a Systematic Doping Strategy via Förster Resonance Energy Transfer for White Emission. Micromachines. 2021; 12(11):1371. https://doi.org/10.3390/mi12111371
Chicago/Turabian StyleAl-Asbahi, Bandar Ali, Mohamad S. AlSalhi, Amanullah Fatehmulla, Mohammad Hafizuddin Hj. Jumali, Saif M. H. Qaid, Wafa Musa Mujamammi, and Hamid M. Ghaithan. 2021. "Controlling the Emission Spectrum of Binary Emitting Polymer Hybrids by a Systematic Doping Strategy via Förster Resonance Energy Transfer for White Emission" Micromachines 12, no. 11: 1371. https://doi.org/10.3390/mi12111371
APA StyleAl-Asbahi, B. A., AlSalhi, M. S., Fatehmulla, A., Jumali, M. H. H., Qaid, S. M. H., Mujamammi, W. M., & Ghaithan, H. M. (2021). Controlling the Emission Spectrum of Binary Emitting Polymer Hybrids by a Systematic Doping Strategy via Förster Resonance Energy Transfer for White Emission. Micromachines, 12(11), 1371. https://doi.org/10.3390/mi12111371