# Theoretical Study of Field-Free Switching in PMA-MTJ Using Combined Injection of STT and SOT Currents

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Landau–Lifshitz–Gilbert Equation with Spin-Transfer Torque (STT) and Spin-Orbit Torque (SOT) Terms

## 3. Results

#### COMBINED STT-SOT Induced Switching in PMA-MTJ

^{12}(refer Figure 2c). Thus, we were able to derive the relation between ${J}_{SOT}$ and ${J}_{STT}$ by linearizing the LLG equation. The magnetization dynamics of the FL under combined injection, as described by Equation (1), can be modified to the following form:

## 4. Conclusions

## 5. Methods

#### Micromagnetic Model

## Supplementary Materials

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Hu, G.; Lee, J.H.; Nowak, J.J.; Sun, J.Z.; Harms, J.; Annunziata, A.; Brown, S.; Chen, W.; Kim, Y.H.; Lauer, G.; et al. STT-MRAM with double magnetic tunnel junctions. In Proceedings of the IEEE 2015 Internaional Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015. [Google Scholar]
- Ikeda, S.; Sato, H.; Honjo, H.; Enobio, E.C.I.; Ishikawa, S.; Yamanouchi, M.; Fukami, S.; Kanai, S.; Matsukura, F.; Endoh, T.; et al. Perpendicular-anisotropy CoFeB-MgO based magnetic tunnel junctions scaling down to 1X nm. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014. [Google Scholar]
- Slonczewski, J.C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater.
**1996**, 159, L1–L7. [Google Scholar] [CrossRef] - Liu, L.; Pai, C.-F.; Li, Y.; Tseng, H.W.; Ralph, D.C.; Buhrman, R.A. Spin-torque switching with the giant spin Hall effect of tantalum. Science
**2012**, 336, 555–558. [Google Scholar] [CrossRef][Green Version] - Miron, I.M.; Gaudin, G.; Auffret, S.; Rodmacq, B.; Schuhl, A.; Pizzini, S.; Vogel, J.; Gambardella, P. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater.
**2010**, 9, 230–234. [Google Scholar] [CrossRef][Green Version] - Miron, I.M.; Garello, K.; Gaudin, G.; Zermatten, P.-J.; Costache, M.V.; Auffret, S.; Bandiera, S.; Rodmacq, B.; Schuhl, A.; Gambardella, P. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature
**2011**, 476, 189–193. [Google Scholar] [CrossRef] [PubMed] - Zhang, S.; Levy, P.M.; Fert, A. Mechanisms of Spin-Polarized Current-Driven Magnetization Switching. Phys. Rev. Lett.
**2002**, 88, 236601. [Google Scholar] [CrossRef] [PubMed][Green Version] - Heinonen, O.G.; Stokes, S.W.; Yi, J.Y. Perpendicular spin torque in magnetic tunnel junctions. Phys. Rev. Lett.
**2010**, 105, 066602. [Google Scholar] [CrossRef] [PubMed] - Kim, J.; Sinha, J.; Hayashi, M.; Yamanouchi, M.; Fukami, S.; Suzuki, T.; Mitani, S.; Ohno, H. Layer thickness dependence of the current-induced effective field vector in Ta/CoFeB/MgO. Nat. Mater.
**2012**, 12, 240–245. [Google Scholar] [CrossRef] [PubMed] - Zhang, C.; Yamanouchi, M.; Sato, H.; Fukami, S.; Ikeda, S.; Matsukura, F.; Ohno, H. Magnetotransport measurements of current induced effective fields in Ta/CoFeB/MgO. Appl. Phys. Lett.
**2013**, 103, 262407. [Google Scholar] [CrossRef] - Zhou, Y. Effect of the field-like spin torque on the switching current and switching speed of magnetic tunnel junction with perpendicularly magnetized free layers. J. Appl. Phys.
**2011**, 109, 023916. [Google Scholar] [CrossRef][Green Version] - Taniguchi, T.; Mitani, S.; Hayashi, M. Critical current destabilizing perpendicular magnetization by the spin Hall effect. Phys. Rev. B
**2015**, 92, 024428. [Google Scholar] [CrossRef][Green Version] - Chun, K.C.; Zhao, H.; Harms, J.D.; Kim, T.H.; Wang, J.-P.; Kim, C.H. A scaling roadmap and performance evaluation of in-plane and perpendicular MTJ based STT-MRAMs for high-density cache memory. IEEE J. Solid-State Circuits
**2013**, 48, 598–610. [Google Scholar] [CrossRef] - Zhao, W.; Zhang, Y.; Devolder, T.; Klein, J.-O.; Ravelosona, D.; Chappert, C.; Mazoyer, P. Failure and reliability analysis of STT-MRAM. Microelectron. Reliab.
**2012**, 52, 1848–1852. [Google Scholar] [CrossRef] - Garello, K.; Avci, C.O.; Miron, I.M.; Baumgartner, M.; Ghosh, A.; Auffret, S.; Boulle, O.; Gaudin, G.; Gambardella, P. Ultrafast magnetization switching by spin-orbit torques. Appl. Phys. Lett.
**2014**, 105, 212402. [Google Scholar] [CrossRef][Green Version] - Garello, K.; Avci, C.O.; Miron, I.M.; Baumgartner, M.; Ghosh, A.; Auffret, S.; Boulle, O.; Gaudin, G.; Gambardella, P. Spin–orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl. Phys. Lett.
**2014**, 104, 042406. [Google Scholar] - Wang, M.; Cai, W.; Zhu, D.; Wang, Z.; Kan, J.; Zhao, Z.; Cao, K.; Wang, Z.; Zhang, Y.; Zhang, T.; et al. Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nat. Electron.
**2018**, 1, 582–588. [Google Scholar] [CrossRef] - Wang, Z.; Zhao, W.; Deng, E.; Zhang, Y.; Klein, J.O. Magnetic non-volatile flip-flop with spin-Hall assistance. Phys. Status Solidi-Rapid Res. Lett.
**2015**, 9, 375–378. [Google Scholar] [CrossRef] - Wang, Z.; Zhao, W.; Deng, E.; Klein, J.; Chappert, C. Perpendicular anisotropy magnetic tunnel junction switched by spin-Hall-assisted spin-transfer torque. J. Phys. D
**2015**, 48, 065001. [Google Scholar] [CrossRef] - Brink, A.A.V.D.; Cosemans, S.; Cornelissen, S.; Manfrini, M.; Vaysset, A.; Van Roy, W.; Min, T.; Swagten, H.J.M.; Koopmans, B.B. Spin-Hall-assisted magnetic random access memory. Appl. Phys. Lett.
**2014**, 104, 012403. [Google Scholar] [CrossRef][Green Version] - Donahue, M.J.; Porter, D.G. (Eds.) OOMMF User’s Guide, Version 1.0; Interagency Report NISTIR 6376; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1999. [Google Scholar]
- You, C.-Y. Micromagnetic Simulations for Spin Transfer Torque in Magnetic Multilayers. J. Magn.
**2012**, 17, 73–77. [Google Scholar] [CrossRef][Green Version] - Liu, L.; Lee, O.J.; Gudmundsen, T.J.; Ralph, D.C.; Buhrman, R.A. Current-Induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett.
**2012**, 109, 096602. [Google Scholar] [CrossRef][Green Version] - Siracusano, G.; Tomasello, R.; d’Aquino, M.; Puliafito, V.; Giordano, A.; Azzerboni, B.; Braganca, P.; Finocchio, G.; Carpentieri, M. Description of statistical switching in perpendicular STT-MRAM within an analytical and numerical micromagnetic framework. IEEE Trans. Magn.
**2018**, 54, 1400210. [Google Scholar] [CrossRef][Green Version] - Zwierzycki, M.; Tserkovnyak, Y.; Kelly, P.J.; Brataas, A.; Bauer, G.E.W. First-principles study of magnetization relaxation enhancement and spin transfer in thin magnetic films. Phys. Rev. B
**2005**, 71, 064420. [Google Scholar] [CrossRef][Green Version] - Theodonis; Kioussis, N.; Kalitsov, A.; Chshiev, M.; Butler, W.H. Anomalous bias dependence of spin torque in magnetic tunnel junctions. Phys. Rev. Lett.
**2006**, 97, 237205. [Google Scholar] [CrossRef] [PubMed][Green Version] - Xiao, J.; Bauer, G.E.W. Spin-transfer torque in magnetic tunnel junctions: Scattering theory. Phys. Rev. B
**2008**, 77, 224419. [Google Scholar] [CrossRef][Green Version] - Tulapurkar, A.A.; Suzuki, Y.; Fukushima, A.; Kubota, H.; Maehara, H.; Tsunekawa, K.; Djayaprawira, D.D.; Watanabe, N.; Yuasa, S. Spin-torque diode effect in magnetic tunnel junctions. Nature
**2005**, 438, 339. [Google Scholar] [CrossRef] - Kubota, H.; Fukushima, A.; Yakushiji, K.; Nagahama, T.; Yuasa, S.; Ando, K.; Maehara, H.; Nagamine, Y.; Tsunekawa, K.; Djayaprawira, D.D.; et al. Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions. Nat. Phys.
**2008**, 4, 37. [Google Scholar] [CrossRef] - Sankey, J.C.; Cui, Y.-T.; Sun, J.Z.; Slonczewski, J.C.; Buhrman, R.A.; Ralph, D.C. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nat. Phys.
**2008**, 4, 67. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**A schematic of the (

**a**) spin-transfer torque (STT) device (

**b**) spin-orbit torque (SOT) device and (

**c**) STT-SOT device.

**Figure 2.**(

**a**) Schematic of the STT-SOT device configuration used (

**b**) Magnetization m relaxing to a point of equilibrium along the ${\overrightarrow{H}}_{eff}$ direction before reversal. (

**c**) Magnetization dynamics of the FL in an STT, SOT and STT-SOT device.

**Figure 3.**Dependence of ${J}_{critical}^{STT}$ on ${\beta}_{STT}$ for $\alpha $ = 0.005, 0.01, 0.02. The solid lines and symbols represent the results obtained from Equation (6) and micromagnetic simulations respectively.

**Figure 4.**The solid line represents boundary Equation (7) above switching takes place from P to AP state (

**a**), with changing ${\beta}_{STT}$ and (

**b**) with increasing ${\beta}_{SOT}$. Symbols represent results obtained from micromagnetic simulations.

**Figure 5.**The solid line represents the boundary Equation (7). The symbols represent the results obtained from micromagnetic simulations.

Parameters | Numerical Values |
---|---|

$\gamma $ | $17.32\times {10}^{11}rad{T}^{-1}{s}^{-1}$ |

$\alpha $ | $0.005$ |

$\eta $ | $0.33$ |

${M}_{s}$ | $1.5\times {10}^{6}A/m$ [23] |

${t}_{FM}$ | 1 nm [23] |

${H}_{Keff}$ | $540Oe$ [23] |

${\theta}_{SHE}(\beta -Ta)$ | $0.1$^{4} |

${\widehat{p}}_{STT}$ | ${\widehat{e}}_{z}$ |

${\widehat{p}}_{SOT}$ | ${\widehat{e}}_{y}$ |

${\beta}_{SOT}$ | 2 |

${\beta}_{STT}$ | 1 |

A_{exchange} | 20 pJ/m |

T_{rise} (J_{STT}, J_{SOT}) | 0.5 ns |

T_{fall} (J_{STT}, J_{SOT}) | 0.5 ns |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wasef, S.; Fariborzi, H.
Theoretical Study of Field-Free Switching in PMA-MTJ Using Combined Injection of STT and SOT Currents. *Micromachines* **2021**, *12*, 1345.
https://doi.org/10.3390/mi12111345

**AMA Style**

Wasef S, Fariborzi H.
Theoretical Study of Field-Free Switching in PMA-MTJ Using Combined Injection of STT and SOT Currents. *Micromachines*. 2021; 12(11):1345.
https://doi.org/10.3390/mi12111345

**Chicago/Turabian Style**

Wasef, Shaik, and Hossein Fariborzi.
2021. "Theoretical Study of Field-Free Switching in PMA-MTJ Using Combined Injection of STT and SOT Currents" *Micromachines* 12, no. 11: 1345.
https://doi.org/10.3390/mi12111345