Circuit Optimization Method to Reduce Disturbances in Poly-Si 1T-DRAM
Abstract
:1. Introduction
2. Structures and Methods
3. Results and Discussion
3.1. Simulation without SL
3.2. Simulation with SL
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nitayama, A.; Kohyama, Y.; Hieda, K. Future Directions for DRAM Memory Cell Technology. In Proceedings of the International Electron Devices Meeting 1998. Technical Digest, San Francisco, CA, USA, 6–9 December 1998; pp. 355–358. [Google Scholar] [CrossRef]
- Okhonin, S.; Nagoga, M.; Sallese, J.M.; Fazan, P. A capacitor-less 1T-DRAM cell. IEEE Electron Device Lett. 2002, 23, 85–87. Available online: https://ieeexplore.ieee.org/abstract/document/981314 (accessed on 30 September 2021). [CrossRef]
- Eiji, Y.; Tetsu, T. A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory. IEEE Trans. Electron Devices 2006, 53, 692–697. Available online: https://ieeexplore.ieee.org/abstract/document/1610897 (accessed on 30 September 2021).
- Ansari, H.R.; Navlakha, N.; Lin, J.-T.; Kranti, A. 1T-DRAM with Shell-Doped Architecture. IEEE Trans. Electron Devices 2018, 66, 428–435. [Google Scholar] [CrossRef]
- Kim, H.; Kang, I.M.; Cho, S.; Sun, W.; Shin, H. Analysis of operation characteristics of junctionless poly-Si 1T-DRAM in accumulation mode. Semicond. Sci. Technol. 2019, 34, 105007. [Google Scholar] [CrossRef]
- Kim, M.-S.; Cho, W.-J. Capacitorless 1T-DRAM on Crystallized Poly-Si TFT. Nanosci. Nanotechnol. 2011, 11, 5608–5611. Available online: https://www.ingentaconnect.com/contentone/asp/jnn/2011/00000011/00000007/art00003 (accessed on 30 September 2021). [CrossRef] [PubMed]
- Kim, H.; Yoo, S.; Kang, I.-M.; Cho, S.; Sun, W.; Shin, H. Analysis of the Sensing Margin of Silicon and Poly-Si 1T-DRAM. Micromachines 2020, 11, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, S.-Y.; Kang, I.-M.; Cho, S.-J.; Sun, W.-K.; Shin, H.-S. Analysis of Grain Boundary Dependent Memory Characteristics in Poly-Si One-Transistor Dynamic Random-Access Memory. Nanosci. Nanotechnol. 2021, 21, 4216–4222. Available online: https://www.ingentaconnect.com/contentone/asp/jnn/2021/00000021/00000008/art00016 (accessed on 30 September 2021).
- Seo, J.-H.; Yoon, Y.-J.; Yu, E.-S.; Sun, W.-K.; Shin, H.-S.; Kang, I.-M.; Lee, J.-H.; Cho, S. Fabrication and Characterization of a Thin-Body Poly-Si 1T DRAM with Charge-Trap Effect. IEEE Electron Device Lett. 2019, 40, 566–569. Available online: https://ieeexplore.ieee.org/abstract/document/8649591 (accessed on 30 September 2021). [CrossRef]
- Chen, Y.-T.; Sun, H.-C.; Huang, C.-F.; Wu, T.-Y.; Liu, C.W.; Hsu, Y.-J.; Chen, J.-S. Capacitorless 1T Memory Cells Using Channel Traps at Grain Boundaries. IEEE Electron Device Lett. 2010, 31, 1125–1127. [Google Scholar] [CrossRef]
- Yoo, S.; Sun, W.-K.; Shin, H. Optimization Considerations for Short Channel Poly-Si 1T-DRAM. Electronics 2020, 9, 1051. [Google Scholar] [CrossRef]
- Baek, M.-H.; Lee, S.-H.; Kwon, D.W.; Seo, J.Y.; Park, B.-G.; Myung-Hyun, B.; Sang-Ho, L.; Woong, K.D.; Yun, S.J.; Byung-Gook, P. Hole Trapping Phenomenon at the Grain Boundary of Thin Poly-Si Floating-Body MOSFET and Its Capacitor-Less DRAM Application. J. Nanosci. Nanotechnol. 2017, 17, 2986–2990. [Google Scholar] [CrossRef]
- Ansari, H.R.; Navlakha, N.; Lee, J.Y.; Cho, S. Double-Gate Junctionless 1T DRAM with Physical Barriers for Retention Improvement. IEEE Trans. Electron Devices 2020, 67, 1471–1479. [Google Scholar] [CrossRef]
- Ohsawa, T.; Fujita, K.; Higashi, T.; Iwata, Y.; Kajiyama, T.; Asao, Y.; Sunouchi, K. Memory design using a one-transistor gain cell on SOI. IEEE J. Solid-State Circuits 2002, 37, 1510–1522. Available online: https://ieeexplore.ieee.org/abstract/document/1046096 (accessed on 30 September 2021). [CrossRef]
- Yoo, S.; Sun, W.; Shin, H. Analysis of a Lateral Grain Boundary for Reducing Performance Variations in Poly-Si 1T-DRAM. Micromachines 2020, 11, 952. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Song, K.-W.; Park, I.H.; Kim, T.-H.; Lee, Y.S.; Kim, S.-G.; Seo, J.; Cho, K.; Lee, K.; Shin, H.; et al. A New Capacitorless 1T DRAM Cell: Surrounding Gate MOSFET With Vertical Channel (SGVC Cell). IEEE Trans. Nanotechnol. 2007, 6, 352–357. [Google Scholar] [CrossRef]
1st-2nd Write | “0”-“0” | “0”-“1” | “1”-“1” | “1”-“0” |
---|---|---|---|---|
Unselected cell | State “0” | State “0” | State “1” | State “1” |
Shared WL cell | State “0” | State “0” | State “1” | State “1” |
Shared BL cell | State “0” | State “0” | State “1” | State “1” |
Selected cell | State “0” | State “1” | State “1” | State “0” |
Operation | Write “1” | Write “0” | VUnselected_1 | VUnselected_0 | Read | Hold |
---|---|---|---|---|---|---|
Vg [V] | −2 | 0 | 0 | −1.5 | 1.2 | 0 |
Vd [V] | 2 | −1.5 | 0 | 0 | 0.1 | 0 |
Time [ns] | 500 | 150 | 500 | 150 | 10 | 50 |
Worst Case in Each State | Drain Current [µA] |
---|---|
“1”-“1” case for shared BL cell | 33.95 |
“0”-“1” case for shared WL cell | 27.09 |
Sensing margin [µA] | 6.86 |
Operation | Write “1” | Write “0” | VUnselected_1 | VUnselected_0 | Read | Hold |
---|---|---|---|---|---|---|
Vg [V] | −2 | 0 | 0.3 | −1.5 | 1.2 | 0 |
Vd [V] | 2 | −1.5 | −0.3 | 0 | 0.1 | 0 |
Vs [V] | 2 | 0 | −0.3 | 0 | 0 | 0 |
Time [ns] | 500 | 150 | 500 | 150 | 10 | 50 |
Cell Name | Drain Current [µA] | |||
---|---|---|---|---|
“0”-“0” Case | “0”-“1” Case | “1”-“0” Case | “1”-“1” Case | |
Unselected cell | 21.63 | 22.60 | 37.75 | 36.62 |
Shared WL cell | 21.12 | 25.45 | 37.69 | 38.09 |
Shared BL cell | 21.71 | 25.53 | 36.90 | 38.09 |
Selected cell | 18.07 | 37.64 | 19.54 | 39.66 |
Structure | Without SL | With SL | ||||
---|---|---|---|---|---|---|
Array Size | 3 × 3 | 5 × 5 | 10 × 10 | 3 × 3 | 5 × 5 | 10 × 10 |
State “1” [µA] | 33.95 | 33.90 | 33.89 | 36.62 | 36.29 | 36.29 |
State “0” [µA] | 27.09 | 27.06 | 27.06 | 25.53 | 25.53 | 25.53 |
Sensing Margin [µA] | 6.86 | 6.84 | 6.83 | 11.09 | 10.76 | 10.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, Y.; Shin, H.; Sun, W.; Park, J. Circuit Optimization Method to Reduce Disturbances in Poly-Si 1T-DRAM. Micromachines 2021, 12, 1209. https://doi.org/10.3390/mi12101209
Ha Y, Shin H, Sun W, Park J. Circuit Optimization Method to Reduce Disturbances in Poly-Si 1T-DRAM. Micromachines. 2021; 12(10):1209. https://doi.org/10.3390/mi12101209
Chicago/Turabian StyleHa, Yejin, Hyungsoon Shin, Wookyung Sun, and Jisun Park. 2021. "Circuit Optimization Method to Reduce Disturbances in Poly-Si 1T-DRAM" Micromachines 12, no. 10: 1209. https://doi.org/10.3390/mi12101209
APA StyleHa, Y., Shin, H., Sun, W., & Park, J. (2021). Circuit Optimization Method to Reduce Disturbances in Poly-Si 1T-DRAM. Micromachines, 12(10), 1209. https://doi.org/10.3390/mi12101209