Inkjet-Printed Graphene-Based 1 × 2 Phased Array Antenna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Graphene Ink Formulation
2.2. Inkjet Printing
2.3. Graphene Film Fabrication
2.4. Electrical Characterization
3. Results
3.1. Graphene Thin-Film Deposition and Reliability Test
3.1.1. Flexibility Test
3.1.2. Oxidation Test
3.2. Graphene-Based Phased Array Antennas (PAA) Design and Fabrication
3.3. Graphene-Based PAA Characterization
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Moussessian, A.; del Castillo, L.; Huang, J.; Sadowy, G.; Hoffman, J.; Smith, P.; Hatake, T.; Derksen, C.; Lopez, B.; Caro, E. An active membrane phased array radar. In Proceedings of the IEEE MTT-S International Microwave Symposium, Long Beach, CA, USA, 17 July 2005. [Google Scholar]
- Roy, S. Designing of a Small Wearable Conformal Phased Array Antenna for Wireless Communications. Master’s Thesis, North Dakota State University, Fargo, ND, USA, 2012. [Google Scholar]
- Salvado, R.; Loss, C.; Gonçalves, R.; Pinho, P. Textile materials for the design of wearable antennas: A survey. Sensors 2012, 12, 15841–15857. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Y.; Pham, D.; Subbaraman, H.; Lu, X.; Chen, R.T. Conformal ink-jet printed-band phased-array antenna incorporating carbon nanotube field-effect transistor based reconfigurable true-time delay lines. IEEE Trans. Microw. Theory Tech. 2012, 60, 179–184. [Google Scholar] [CrossRef]
- Subbaraman, H.; Pham, D.T.; Xu, X.; Chen, M.Y.; Hosseini, A.; Lu, X.; Chen, R.T. Inkjet-printed two-dimensional phased-array antenna on a flexible substrate. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 170–173. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Monne, M.A.; Wang, S.; Yu, Q.; Chen, M.Y. Interfacial separation and electrochemical delamination of CVD grown multilayer graphene for recyclable use of Cu powder. RSC Adv. 2016, 6, 24865–24870. [Google Scholar] [CrossRef]
- Monne, M.A.; Jewel, M.U.; Wang, Z.; Chen, M.Y. Graphene Based 3D Printed Single Patch Antenna. Proc. SPIE 2018, 10725. [Google Scholar] [CrossRef]
- Monne, M.A.; Enuka, E.; Wang, Z.; Chen, M.Y. Inkjet printed graphene-based field-effect transistors on flexible substrate, Low-Dimensional Materials and Devices. Proc. SPIE 2017, 10349. [Google Scholar] [CrossRef]
- Wang, Z.; Cook, A.F.; Yang, X.; Liu, Z.; Yu, Q.; Chen, M.Y. Graphene-based flexible field effect transistor with inkjet printed silver electrodes. Curr. Nanosci. 2013, 9, 635–637. [Google Scholar] [CrossRef]
- Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668–674. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tosi, M.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Bonaccorso, F.; Fal’Ko, V.I.; Novoselov, K.S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N.; et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. J. Nanoscale 2015, 7, 4598–4810. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Shen, X.; Yao, J.; Park, J. Graphene nanosheets for enhanced lithium storage in lithium ionbatteries. Carbon N. Y. 2009, 46, 2049–2053. [Google Scholar] [CrossRef]
- Blake, P.; Brimicombe, P.D.; Nair, R.R.; Booth, T.J.; Jiang, D.; Schedin, F.; Ponomarenko, L.A.; Morozov, S.V.; Gleeson, H.F.; Hill, E.H.; et al. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Int. J. Electroanal. 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Enuka, E.; Monne, M.A.; Lan, X.; Gambin, V.; Koltun, R.; Tice, J.; Chen, M.Y. Method of preparing a polar based magnetic ink suitable for inkjet printing and characterization of Ni and Mn ferrite thin film. Adv. Funct. Mater. 2017. [Google Scholar]
- Monne, M.A.; Lan, X.; Chen, M.Y. Review Article: Material Selection and Fabrication Processes for Flexible Conformal Antennas. Int. J. Antenna Propag. 2018, 9815631, 1–14. [Google Scholar]
- Soontornpipit, P.; Furse, C.M.; Chung, Y.C. Design of implantable microstrip antenna for communication with medical implants. IEEE Trans. Microw. Theory Tech. 2004, 52, 1944–1951. [Google Scholar] [CrossRef]
- Khan, A.; Nema, R. Analysis of Five Different Dielectric Substrates on Microstrip Patch Antenna. Int. J. Comput. Appl. 2012, 55, 6–12. [Google Scholar] [CrossRef]
- Li, L.W.; Li, Y.N.; Yeo, T.S.; Mosig, J.R.; Martin, O.J.F. A broadband and high-gain metamaterial microstrip antenna. Appl. Phys. Lett. 2010, 96, 164101. [Google Scholar] [CrossRef]
- Elias1, D.C.; Nair1, R.R.; Mohiuddin, T.M.G.; Morozov, S.V.; Blake, P.; Halsall, M.P.; Ferrari, A.C.; Boukhvalov, D.W.; Katsnelson, M.I.; Geim, A.K.; et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphene. Science 2009, 323, 610–613. [Google Scholar] [CrossRef] [Green Version]
- Drummond, T.G.; Hill, M.G.; Barton, J.K. Electrochemical DNA sensors. Nat. Biotechnol. 2003, 21, 1192–1199. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; He, Z.; Gao, Y.; Liu, J. Direct desktop printed-circuits-on-paper flexible electronics. Sci. Rep. 2013, 3, 1786. [Google Scholar] [CrossRef]
- Monne, M.A.; Lan, X.; Zhang, C.; Chen, M.Y. Inkjet-Printed Flexible MEMS Switches for Phased-Array Antennas. Int. J. Antenna Propag. 2018, 4517848, 1–10. [Google Scholar] [CrossRef]
- Jewel, M.U.; Monne, M.A.; Mishra, B.; Chen, M.Y. Inkjet-printed molybdenum disulfide and nitrogen-doped graphene active layer high On/Off ratio transistors. Molecules 2020, 25, 1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jewel, M.U.; Mahmud, M.D.S.; Monne, M.A.; Zakhidov, A.; Chen, M.Y. Low temperature atomic layer deposition of zirconium oxide for inkjet printed transistor applications. RSC Adv. 2019, 9, 1841–1848. [Google Scholar] [CrossRef] [Green Version]
- Monne, M.A.; Zaid, A.; Mia, D.; Khanal, J.; Zakhidov, A.; Chen, M.Y. Anti-Reflective Coating for Flexible Devices Using Plasma Enhanced Chemical Vapor Deposition Technique. In Proceedings of the 2018 International Conference on Optical MEMS and Nanophotonics (OMN), Lausanne, Switzerland, 29 July–2 August 2018; pp. 1–2. [Google Scholar]
- Wang, Y.; Xu, H.; Zhang, J.; Li, G. Electrochemical Sensors for Clinic Analysis. Sensors 2008, 8, 2043–2081. [Google Scholar] [CrossRef] [Green Version]
- Soltman, D.; Subramanian, V. Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect. Am. Chem. Soc. Langmui 2008, 24, 2224–2231. [Google Scholar] [CrossRef]
- He, P.; Derby, B. Controlling Coffee Ring Formation during Drying of Inkjet Printed 2D Inks. Adv. Mater. Interfaces 2017, 4, 1700944. [Google Scholar] [CrossRef] [Green Version]
SI No. | Temperature (°C) | Shear Rate (s−1) | Regression Coefficient (R2) | Viscosity (cP) |
---|---|---|---|---|
1 | 25 | 150 | 0.9910 | 5.57 |
2 | 25 | 372 | 0.9863 | 5.62 |
3 | 25 | 750 | 0.9967 | 5.51 |
4 | 25 | 1500 | 0.9890 | 5.40 |
5 | 25 | 1875 | 0.9738 | 5.28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monne, M.A.; Grubb, P.M.; Stern, H.; Subbaraman, H.; Chen, R.T.; Chen, M.Y. Inkjet-Printed Graphene-Based 1 × 2 Phased Array Antenna. Micromachines 2020, 11, 863. https://doi.org/10.3390/mi11090863
Monne MA, Grubb PM, Stern H, Subbaraman H, Chen RT, Chen MY. Inkjet-Printed Graphene-Based 1 × 2 Phased Array Antenna. Micromachines. 2020; 11(9):863. https://doi.org/10.3390/mi11090863
Chicago/Turabian StyleMonne, Mahmuda Akter, Peter Mack Grubb, Harold Stern, Harish Subbaraman, Ray T. Chen, and Maggie Yihong Chen. 2020. "Inkjet-Printed Graphene-Based 1 × 2 Phased Array Antenna" Micromachines 11, no. 9: 863. https://doi.org/10.3390/mi11090863
APA StyleMonne, M. A., Grubb, P. M., Stern, H., Subbaraman, H., Chen, R. T., & Chen, M. Y. (2020). Inkjet-Printed Graphene-Based 1 × 2 Phased Array Antenna. Micromachines, 11(9), 863. https://doi.org/10.3390/mi11090863