Micro Water Flow Measurement Using a Temperature-Compensated MEMS Piezoresistive Cantilever
Abstract
1. Introduction
2. Measurement Principle
3. Fabrication and Assembly
4. Cantilever Response Measurement
5. Temperature Compensation Effect
6. Water Flow Measurement
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Silvestri, S.; Schena, E. Micromachined Flow Sensors in Biomedical Applications. Micromachines 2012, 3, 225–243. [Google Scholar] [CrossRef]
- Zarifi, M.H.; SadAbadi, H.; Hejazi, S.H.; Daneshmand, M.; Nezhad, A.S. Noncontact and Nonintrusive Microwave-Microfluidic Flow Sensor for Energy and Biomedical Engineering. Sci. Rep. 2018, 8, 139. [Google Scholar] [CrossRef]
- Asadnia, M.; Kottapalli, A.G.P.; Haghighi, R.; Cloitre, A.; Alvarado, P.V.Y.; Miao, J.; Triantafyllou, M.S. MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray. Bioinspir. Biomim. 2015, 10, 36008. [Google Scholar] [CrossRef]
- Smith, R.; Sparks, D.; Riley, D.; Najafi, N. A MEMS-Based Coriolis Mass Flow Sensor for Industrial Applications. IEEE Trans. Ind. Electron. 2008, 56, 1066–1071. [Google Scholar] [CrossRef]
- Lien, V.; Vollmer, F. Microfluidic flow rate detection based on integrated optical fiber cantilever. Lab Chip 2007, 7, 1352. [Google Scholar] [CrossRef]
- Ejeian, F.; Azadi, S.; Razmjou, A.; Orooji, Y.; Kottapalli, A.; Warkiani, M.E.; Asadnia, M. Design and applications of MEMS flow sensors: A review. Sens. Actuators A 2019, 295, 483–502. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Chen, C.-P.; Chang, C.-M.; Lin, C.-P.; Lin, C.-H.; Fu, L.-M.; Lee, C.-Y. MEMS-based gas flow sensors. Microfluid. Nanofluid. 2009, 6, 333–346. [Google Scholar] [CrossRef]
- Kuo, J.T.W.; Yu, L.; Meng, E. Micromachined Thermal Flow Sensors—A Review. Micromachines 2012, 3, 550–573. [Google Scholar] [CrossRef]
- Wu, S.; Lin, Q.; Yuen, Y.; Wu, S. MEMS flow sensors for nano-fluidic applications. Sens. Actuators A 2001, 89, 152–158. [Google Scholar] [CrossRef]
- Ahrens, R.; Schlote-Holubek, K. A micro flow sensor from a polymer for gases and liquids. J. Micromech. Microeng. 2009, 19, 74006. [Google Scholar] [CrossRef]
- Meng, E.; Li, P.-Y.; Tai, Y.-C. A biocompatible Parylene thermal flow sensing array. Sens. Actuators A 2008, 144, 18–28. [Google Scholar] [CrossRef]
- Su, Y.; Evans, A.G.R.; Brunnschweiler, A. Micromachined silicon cantilever paddles with piezoresistive readout for flow sensing. J. Micromech. Microeng. 1996, 6, 69–72. [Google Scholar] [CrossRef]
- Nezhad, A.S.; Ghanbari, M.; Agudelo, C.G.; Packirisamy, M.; Bhat, R.B.; Geitmann, A. PDMS Microcantilever-Based Flow Sensor Integration for Lab-on-a-Chip. IEEE Sens. J. 2012, 13, 601–609. [Google Scholar] [CrossRef]
- Noeth, N.; Keller, S.; Boisen, A. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems. Sensors 2013, 14, 229–244. [Google Scholar] [CrossRef]
- Zhang, Q.; Ruan, W.; Wang, H.; Zhou, Y.; Wang, Z.; Liu, L. A self-bended piezoresistive microcantilever flow sensor for low flow rate measurement. Sens. Actuators A 2010, 158, 273–279. [Google Scholar] [CrossRef]
- Takahashi, H.; Nakai, A.; Shimoyama, I. Waterproof airflow sensor for seabird bio-logging using a highly sensitive differential pressure sensor and nano-hole array. Sens. Actuators A 2018, 281, 243–249. [Google Scholar] [CrossRef]
- Takahashi, H.; Sato, K.; Nguyen, M.-D.; Matsumoto, K.; Shimoyama, I. Characteristic evaluation of a bristled wing using mechanical models of a thrips wings with MEMS piezoresistive cantilevers. J. Biomech. Sci. Eng. 2015, 10, 14–233. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Lee, C.-Y.; Chiang, C.-M. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure. Sensors 2007, 7, 2389–2401. [Google Scholar] [CrossRef]
- Quist, A.; Chand, A.; Ramachandran, S.; Cohen, D.; Lal, R. Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels. Lab Chip 2006, 6, 1450. [Google Scholar] [CrossRef]
- Chen, N.; Tucker, C.; Engel, J.M.; Yang, Y.; Pandya, S.; Liu, C. Design and Characterization of Artificial Haircell Sensor for Flow Sensing With Ultrahigh Velocity and Angular Sensitivity. J. Microelectromech. Syst. 2007, 16, 999–1014. [Google Scholar] [CrossRef]
- Su, Y.; Evans, A.G.R.; Brunnschweiler, A.; Ensell, G. Characterization of a highly sensitive ultra-thin piezoresistive silicon cantilever probe and its application in gas flow velocity sensing. J. Micromech. Microeng. 2002, 12, 780–785. [Google Scholar] [CrossRef]
- Matsudaira, K.; Takahashi, H.; Shoji, K.H.; Nguyen, T.-V.; Tsukagoshi, T.; Shimoyama, I. A MEMS-based measurement system for evaluating the force-length relationship of human induced pluripotent stem cell-derived cardiomyocytes adhered on a substrate. J. Micromech. Microeng. 2019, 29, 055003. [Google Scholar] [CrossRef]
- Nguyen, T.-V.; Kazama, R.; Takahashi, H.; Takahata, T.; Matsumoto, K.; Shimoyama, I. A wall shear stress sensor using a pair of sidewall doped cantilevers. J. Micromech. Microeng. 2017, 27, 075017. [Google Scholar] [CrossRef]
- Shekhawat, G.S. MOSFET-Embedded Microcantilevers for Measuring Deflection in Biomolecular Sensors. Science 2006, 311, 1592–1595. [Google Scholar] [CrossRef]
- Kang, S.-W.; Fragala, J.; Banerjee, D. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs). Sensors 2015, 15, 21785–21806. [Google Scholar] [CrossRef]
- Zhao, R.; Sun, Y. Polymeric Flexible Immunosensor Based on Piezoresistive Micro-Cantilever with PEDOT/PSS Conductive Layer. Sensors 2018, 18, 451. [Google Scholar] [CrossRef]
- Jung, U.G.; Kuwana, K.; Ajiki, Y.; Takahashi, H.; Kan, T.; Takei, Y.; Noda, K.; Iwase, E.; Matsumoto, K.; Shimoyama, I. A photoresponse-compensated parallel piezoresistive cantilever for cellular force measurements. J. Micromech. Microeng. 2013, 23, 45015. [Google Scholar] [CrossRef]
- Pelletier, J.-C.; Aoyama, H.; Irie, Y.; Kanamori, C.; Piat, N. Development of a Micro-Manipulator for Bio-Targets Using Micro Flows. J. Robot. Mechatronics 2018, 30, 638–649. [Google Scholar] [CrossRef]
- Hopcroft, M.A.; Nix, W.D.; Kenny, T.W. What is the Young’s Modulus of Silicon? J. Microelectromech. Syst. 2010, 19, 229–238. [Google Scholar] [CrossRef]
- Gel, M.; Shimoyama, I. Force sensing submicrometer thick cantilevers with ultra-thin piezoresistors by rapid thermal diffusion. J. Micromech. Microeng. 2003, 14, 423–428. [Google Scholar] [CrossRef]
- Takahashi, H.; Dung, N.M.; Matsumoto, K.; Shimoyama, I. Differential pressure sensor using a piezoresistive cantilever. J. Micromech. Microeng. 2012, 22, 55015. [Google Scholar] [CrossRef]
- Hoerner, S.F. Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance; Hoerner Fluid Dynamics: Bricktown, NJ, USA, 1965. [Google Scholar]
- Onoe, H.; Gel, M.; Hoshino, K.; Matsumoto, K.; Shimoyama, I. Direct Measurement of the Binding Force between Microfabricated Particles and a Planar Surface in Aqueous Solution by Force-Sensing Piezoresistive Cantilevers. Langmuir 2005, 21, 11251–11261. [Google Scholar] [CrossRef] [PubMed]
- Harley, J.A.; Kenny, T.W. High-sensitivity piezoresistive cantilevers under 1000 Å thick. Appl. Phys. Lett. 1999, 75, 289–291. [Google Scholar] [CrossRef]
- Villanueva, G.; Montserrat, J.; Pérez-Murano, F.; Rius, G.; Bausells, J. Submicron piezoresistive cantilevers in a CMOS-compatible technology for intermolecular force detection. Microelectron. Eng. 2004, 73–74, 480–486. [Google Scholar] [CrossRef]
- Arlett, J.L.; Maloney, J.R.; Gudlewski, B.; Muluneh, M.; Roukes, M.L. Self-Sensing Micro- and Nanocantilevers with Attonewton-Scale Force Resolution. Nano Lett. 2006, 6, 1000–1006. [Google Scholar] [CrossRef]
- Tosolini, G.; Scarponi, F.; Cannistraro, S.; Bausells, J. Biomolecule recognition using piezoresistive nanomechanical force probes. Appl. Phys. Lett. 2013, 102, 253701. [Google Scholar] [CrossRef]
- Kwoka, K.; Oroowska, K.; Majstrzyk, W.; Sierakowski, A.; Janus, P.; Tomaszewski, D.; Grabiec, P.; Piasecki, T.; Gotszalk, T. Soft piezoresistive cantilevers for adhesion force measurements. Sens. Actuators A. 2020, 301, 111747. [Google Scholar] [CrossRef]
- Takahashi, H.; Kan, T.; Matsumoto, K.; Shimoyama, I. Simultaneous detection of particles and airflow with a MEMS piezoresistive cantilever. Meas. Sci. Technol. 2013, 24, 025107. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pommois, R.; Furusawa, G.; Kosuge, T.; Yasunaga, S.; Hanawa, H.; Takahashi, H.; Kan, T.; Aoyama, H. Micro Water Flow Measurement Using a Temperature-Compensated MEMS Piezoresistive Cantilever. Micromachines 2020, 11, 647. https://doi.org/10.3390/mi11070647
Pommois R, Furusawa G, Kosuge T, Yasunaga S, Hanawa H, Takahashi H, Kan T, Aoyama H. Micro Water Flow Measurement Using a Temperature-Compensated MEMS Piezoresistive Cantilever. Micromachines. 2020; 11(7):647. https://doi.org/10.3390/mi11070647
Chicago/Turabian StylePommois, Romain, Gaku Furusawa, Takuya Kosuge, Shun Yasunaga, Haruki Hanawa, Hidetoshi Takahashi, Tetsuo Kan, and Hisayuki Aoyama. 2020. "Micro Water Flow Measurement Using a Temperature-Compensated MEMS Piezoresistive Cantilever" Micromachines 11, no. 7: 647. https://doi.org/10.3390/mi11070647
APA StylePommois, R., Furusawa, G., Kosuge, T., Yasunaga, S., Hanawa, H., Takahashi, H., Kan, T., & Aoyama, H. (2020). Micro Water Flow Measurement Using a Temperature-Compensated MEMS Piezoresistive Cantilever. Micromachines, 11(7), 647. https://doi.org/10.3390/mi11070647