Magnetic Micromachine Using Nickel Nanoparticles for Propelling and Releasing in Indirect Assembly of Cell-Laden Micromodules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Magnetic Micromachines
2.2. Fabrication of Micromodules
3. External Magnetic Actuation
3.1. Electromagnetic System
3.2. Principe of Magnetic Actuation
3.3. Magnetic Field Generation and Control Model
4. Results and Discussion
4.1. Motion Measurement
4.2. Propulsion by Magnetic Micromachine
4.3. Bioassembly and Cultivation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lu, H.; Wang, P.; Tan, R. Nanorobotic System for PreciseIn SituThree-Dimensional Manufacture of Helical Microstructures. IEEE Robot. Autom. Lett. 2018, 3, 2846–2853. [Google Scholar]
- Chen, X.; Hoop, M.; Mushtaq, F. Recent developments in magnetically driven micro-and nanorobots. Appl. Mater. Today 2017, 9, 37–48. [Google Scholar] [CrossRef]
- Yan, X.; Zhou, Q.; Vincent, M. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2017, 2, eaaq1155. [Google Scholar] [CrossRef]
- Gao, M.; Hu, C.; Chen, Z. Design and Fabrication of a Magnetic Propulsion System for Self-Propelled Capsule Endoscope. IEEE Trans. Biomed. Eng. 2010, 57, 2891–2902. [Google Scholar] [PubMed]
- Guo, S.; Yang, Q.; Bai, L. Development of multiple capsule robots in pipe. Micromachines 2018, 9, 259. [Google Scholar] [CrossRef]
- Kummer, M.; Abbott, J.; Kratochvil, B. OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation. IEEE Trans. Robot. 2010, 26, 1006–1017. [Google Scholar]
- Xi, W.; Solovev, A.; Ananth, A. Rolled-up magnetic microdrillers: Towards remotely controlled minimally invasive surgery. Nanoscale 2013, 5, 1294–1297. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Nelson, B. Magnetic helical micro-and nanorobots: Toward their bio -medical applications. Engineering 2015, 1, 021–026. [Google Scholar] [CrossRef]
- Yu, H.; Tang, W.; Mu, G. Micro-/Nanorobots Propelled by Oscillating Magnetic Fields. Micromachines 2018, 9, 540. [Google Scholar] [CrossRef]
- Xu, T.; Yu, J.; Yan, X. Magnetic actuation based motion control for microrobots: An overview. Micromachines 2015, 6, 1346–1364. [Google Scholar] [CrossRef]
- Hao, R.; Xing, R.; Xu, Z. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729–2742. [Google Scholar] [CrossRef]
- Lasheras, X.; Insausti, M.; Gil, M. Chemical synthesis and magnetic properties of monodisperse nickel ferrite nanoparticles for biomedical applications. J. Phys. Chem. C 2016, 120, 3492–3500. [Google Scholar] [CrossRef]
- Gao, J.; Gu, H.; Xu, B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Tottori, S.; Zhang, L.; Qiu, F. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv. Mater. 2012, 24, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Sakar, M.; Petruska, A. Soft micromachines with programmable motility and morphology. Nat. Commun. 2016, 7, 12263. [Google Scholar] [CrossRef] [Green Version]
- Fusco, S.; Huang, H.; Peyer, K. Shape-switching microrobots for medical applications: The influence of shape in drug delivery and locomotion. ACS Appl. Mater. Interfaces 2015, 7, 6803–6811. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, J.; Morozov, K. Highly efficient freestyle magnetic nanoswimmer. Nano Lett. 2017, 17, 5092–5098. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, M.; Yang, Y. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat. Commun. 2018, 9, 3944. [Google Scholar] [CrossRef]
- Xu, F.; Inci, F.; Mullick, O. Release of Magnetic Nanoparticles from Cell-Encapsulating Biodegradable Nanobiomaterials. ACS Nano 2012, 6, 6640–6649. [Google Scholar] [CrossRef] [Green Version]
- Mou, X.; Ali, Z.; Li, S. Applications of magnetic nanoparticles in targeted drug delivery system. J. Nanosci. Nanotechnol. 2015, 15, 54–62. [Google Scholar] [CrossRef]
- Maleki, H.; Rai, A.; Pinto, S. High antimicrobial activity and low human cell cytotoxicity of core–shell magnetic nanoparticles functionalized with an antimicrobial peptide. ACS Appl. Mater. Interfaces 2016, 8, 11366–11378. [Google Scholar] [CrossRef]
- Zhou, Q.; Petit, T.; Choi, H. Dumbbell Fluidic Tweezers for Dynamical Trapping and Selective Transport of Microobjects. Adv. Funct. Mater. 2017, 27, 1604571. [Google Scholar] [CrossRef]
- Tasoglu, S.; Diller, E.; Guven, S. Untethered micro-robotic coding of three-dimensional material composition. Nat. Commun. 2014, 5, 3124. [Google Scholar] [CrossRef]
- Diller, E.; Sitti, M. Robotics: Three-Dimensional Programmable Assembly by Untethered Magnetic Robotic Micro-Grippers. Adv. Funct. Mater. 2014, 24, 4377. [Google Scholar] [CrossRef]
- Zhang, J.; Salehizadeh, M.; Diller, E. Parallel Pick and Place Using Two Independent Untethered Mobile Magnetic Microgrippers. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 123–128. [Google Scholar]
- Huang, T.; Sakar, M.; Mao, A. 3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents. Adv. Mater. 2015, 27, 6644–6650. [Google Scholar] [CrossRef]
- Faustino, V.; Catarino, S.; Lima, R. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. J. Biomech. 2016, 49, 2280–2292. [Google Scholar] [CrossRef] [Green Version]
- Faustino, V.; Catarino, S.; Pinho, D. A Passive Microfluidic Device Based on Crossflow Filtration for Cell Separation Measurements: A Spectrophotometric Characterization. Biosensors 2018, 8, 125. [Google Scholar] [CrossRef]
- Boas, L.; Faustino, V.; Lima, R. Assessment of the deformability and velocity of healthy and artificially impaired red blood cells in narrow polydimethylsiloxane (PDMS) microchannels. Micromachines 2018, 9, 384. [Google Scholar] [CrossRef]
- Jang, D.; Jeong, J.; Song, H. Targeted drug delivery technology using untethered microrobots: A review. J. Micromech. Microeng. 2019, 29, 053002. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, C.; Wang, X. Development of micro-and nanorobotics: A review. Sci. China Technol. Sci. 2019, 62, 1–20. [Google Scholar] [CrossRef]
- Wang, H.; Cui, J.; Zheng, Z. Assembly of RGD-modified hydrogel micromodules into permeable three-dimensional hollow microtissues mimicking in vivo tissue structures. ACS Appl. Mater. Interfaces 2017, 9, 41669–41679. [Google Scholar] [CrossRef]
- Cui, J.; Wang, H.; Zheng, Z. Fabrication of perfusable 3D hepatic lobule-like constructs through assembly of multiple cell type laden hydrogel microstructures. Biofabrication 2018, 11, 015016. [Google Scholar] [CrossRef] [PubMed]
- Markovitz-Bishitz, Y.; Tauber, Y.; Afrimzon, E. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids. Biomaterials 2010, 31, 8436–8444. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Ma, Y.; Lou, Q. Three-dimensional cell culture and drug testing in a microfluidic sidewall-attached droplet array. Anal. Chem. 2017, 89, 10153–10157. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Zhao, S. Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment. Lab Chip 2014, 14, 471–481. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, H.; Cui, J.; Shi, Q.; Zheng, Z.; Sun, T.; Huang, Q.; Fukuda, T. Magnetic Micromachine Using Nickel Nanoparticles for Propelling and Releasing in Indirect Assembly of Cell-Laden Micromodules. Micromachines 2019, 10, 370. https://doi.org/10.3390/mi10060370
Li J, Wang H, Cui J, Shi Q, Zheng Z, Sun T, Huang Q, Fukuda T. Magnetic Micromachine Using Nickel Nanoparticles for Propelling and Releasing in Indirect Assembly of Cell-Laden Micromodules. Micromachines. 2019; 10(6):370. https://doi.org/10.3390/mi10060370
Chicago/Turabian StyleLi, Jianing, Huaping Wang, Juan Cui, Qing Shi, Zhiqiang Zheng, Tao Sun, Qiang Huang, and Toshio Fukuda. 2019. "Magnetic Micromachine Using Nickel Nanoparticles for Propelling and Releasing in Indirect Assembly of Cell-Laden Micromodules" Micromachines 10, no. 6: 370. https://doi.org/10.3390/mi10060370
APA StyleLi, J., Wang, H., Cui, J., Shi, Q., Zheng, Z., Sun, T., Huang, Q., & Fukuda, T. (2019). Magnetic Micromachine Using Nickel Nanoparticles for Propelling and Releasing in Indirect Assembly of Cell-Laden Micromodules. Micromachines, 10(6), 370. https://doi.org/10.3390/mi10060370