Characterization of Al Incorporation into HfO2 Dielectric by Atomic Layer Deposition
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Khandelwal, A.; Niimi, H.; Lucovsky, G.; Lamb, H.H. Low-temperature Ar/N2 remote plasma nitridation of SiO2 thin films. J. Vac. Sci. Technol. A 2002, 20, 1989–1996. [Google Scholar] [CrossRef]
- Muller, D.A.; Sorsch, T.; Moccio, S.; Baumann, F.H.; Lutterodt, K.E.; Timp, G. The electronic structure at the atomic scale of ultrathin gate oxides. Nature 1999, 399, 758–761. [Google Scholar] [CrossRef]
- Ho, M.-Y.; Gong, H.; Wilk, G.D.; Busch, B.W.; Green, M.L.; Lin, W.H.; See, A.; Lahiri, S.K.; Loomans, M.E.; Räisänen, P.I.; et al. Suppressed crystallization of Hf-based gate dielectrics by controlled addition of Al2O3 using atomic layer deposition. Appl. Phys. Lett. 2002, 81, 4218–4220. [Google Scholar] [CrossRef]
- Copel, M.; Gribelyuk, M.; Gusev, E. Structure and stability of ultrathin zirconium oxide layers on Si(001). Appl. Phys. Lett. 2000, 76, 436–438. [Google Scholar] [CrossRef]
- Clark, R. Emerging Applications for High K Materials in VLSI Technology. Materials 2014, 7, 2913–2944. [Google Scholar] [CrossRef]
- Croizier, G.; Martins, P.; Le Baillif, M.; Aubry, R.; Bansropun, S.; Fryziel, M.; Rolland, N.; Ziaei, A. Advantages of ALD over evaporation deposition for high-k materials integration in high power capacitive RF MEMS. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1237–1240. [Google Scholar]
- Mackus, A.J.M.; Schneider, J.R.; MacIsaac, C.; Baker, J.G.; Bent, S.F. Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review. Chem. Mater. 2019, 31, 1142–1183. [Google Scholar] [CrossRef]
- Knoops, H.C.M.; Faraz, T.; Arts, K.; Kessels, W.M.M. (Erwin) Status and prospects of plasma-assisted atomic layer deposition. J. Vac. Sci. Technol. A 2019, 37, 030902. [Google Scholar] [CrossRef]
- Oviroh, P.O.; Akbarzadeh, R.; Pan, D.; Coetzee, R.A.M.; Jen, T.C. New development of atomic layer deposition: Processes, methods and applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496. [Google Scholar] [CrossRef]
- Shim, J.H.; Choi, H.J.; Kim, Y.; Torgersen, J.; An, J.; Lee, M.H.; Prinz, F.B. Process–property relationship in high-k ALD SrTiO3 and BaTiO3: A review. J. Mater. Chem. C 2017, 5, 8000–8013. [Google Scholar] [CrossRef]
- Choi, J.S.; Park, J.G. Effect of NH3 Plasma Passivation on the Electrical Characteristics of a Nanolaminated ALD HfAlO on InGaAs MOS Capacitor. J. Korean Phys. Soc. 2015, 66, 1885–1888. [Google Scholar] [CrossRef]
- Koo, J.; Lee, J.; Kim, S.; Kim, Y.D.; Jeon, H.; Kim, D.; Kim, Y. Characteristics of Hafnium-Aluminum-Oxide Thin Films Deposited by Using Atomic Layer Deposition with Various Aluminum Compositions. J. Korean Phys. Soc. 2005, 47, 501–507. [Google Scholar]
- Park, P.K.; Kang, S. Enhancement of dielectric constant in HfO2 thin films by the addition of Al2O3. Appl. Phys. Lett. 2006, 89, 192905. [Google Scholar] [CrossRef]
- He, G.; Sun, Z.; Li, G.; Zhang, L. Review and Perspective of Hf-based High-k Gate Dielectrics on Silicon Review and Perspective of Hf-based High- k Gate Dielectrics on Silicon. Crit. Rev. Solid State Mater. Sci. 2012, 37, 131–157. [Google Scholar] [CrossRef]
- Bhuyian, M.N.U.; Misra, D. Multilayered ALD HfAlOx and HfO2 for High-Quality Gate Stacks. IEEE Trans. Device Mater. Reliab. 2015, 15, 229–235. [Google Scholar] [CrossRef]
- Chiou, Y.; Chang, C.; Wang, C.; Lee, K.; Wu, T.; Kwo, R.; Hong, M. Effect of Al Incorporation in the Thermal Stability of Atomic-Layer-Deposited HfO2 for Gate Dielectric Applications. J. Electrochem. Soc. 2007, 154, G99–G102. [Google Scholar] [CrossRef]
- Yu, H.Y.; Li, M.F.; Cho, B.J.; Yeo, C.C.; Joo, M.S.; Kwong, D.-L.; Pan, J.S.; Ang, C.H.; Zheng, J.Z.; Ramanathan, S. Energy gap and band alignment for (HfO2)x(Al2O3)1−x on (100) Si. Appl. Phys. Lett. 2002, 81, 376–378. [Google Scholar] [CrossRef]
- Park, T.J.; Kim, J.H.; Jang, J.H.; Lee, C.-K.; Na, K.D.; Lee, S.Y.; Jung, H.; Kim, M.; Han, S.; Hwang, C.S. Reduction of Electrical Defects in Atomic Layer Deposited HfO2 Films by Al Doping. Chem. Mater. 2010, 22, 4175–4184. [Google Scholar] [CrossRef]
- Ding, Y.M.; Misra, D. Oxide structure-dependent interfacial layer defects of HfAlO/SiO2/Si stack analyzed by conductance method. J. Vac. Sci. Technol. B 2015, 33, 021203. [Google Scholar] [CrossRef]
- Lu, B.; Lv, H.; Zhang, Y.; Zhang, Y.; Liu, C. Comparison of HfAlO, HfO2/Al2O3, and HfO2 on n-type GaAs using atomic layer deposition. Superlattices Microstruct. 2016, 99, 54–57. [Google Scholar] [CrossRef]
- Fleetwood, D.M. “Border Traps” in MOS Devices. IEEE Trans. Nucl. Sci. 1992, 39, 269–271. [Google Scholar] [CrossRef]
- Gan, J. Extraction of Border Trap Density in InAs Nanowire Transistors. Master’s Thesis, Lund University, Lund, Sweden, 2012. [Google Scholar]
- Fleetwood, D.M. Border traps and bias-temperature instabilities in MOS devices. Microelectron. Reliab. 2018, 80, 266–277. [Google Scholar] [CrossRef]
- Lu, H.-H.; Xu, J.-P.; Liu, L.; Lai, P.-T.; Tang, W.-M. Equivalent distributed capacitance model of oxide traps on frequency dispersion of C–V curve for MOS capacitors. Chin. Phys. B 2016, 25, 118502. [Google Scholar] [CrossRef]
- Lin, J.; Monaghan, S.; Cherkaoui, K.; Povey, I.M.; Sheehan, B.; Hurley, P.K. Examining the relationship between capacitance-voltage hysteresis and accumulation frequency dispersion in InGaAs metal-oxidesemiconductor structures based on the response to post-metal annealing. Microelectron. Eng. 2017, 178, 204–208. [Google Scholar] [CrossRef]
- Zhu, W.J.; Tamagawa, T.; Gibson, M.; Furukawa, T.; Ma, T.P. Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics. IEEE Electron Device Lett. 2002, 23, 649–651. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Ichikawa, O.; Osada, T.; Hata, M.; Yamada, H.; Takenaka, M.; Takagi, S. Impact of La2O3 interfacial layers on InGaAs metal-oxide-semiconductor interface properties in Al2O3/La2O3/InGaAs gate stacks deposited by atomic-layer-deposition. J. Appl. Phys. 2015, 118, 085309. [Google Scholar] [CrossRef]
- Huang, A.; Zheng, X.; Xiao, Z.; Wang, M.; Di, Z.; Chu, P.K. Interface dipole engineering in metal gate/highk stacks. Chin. Sci. Bull. 2012, 57, 2872–2878. [Google Scholar] [CrossRef]
- Fan, J.-B.; Liu, H.-X.; Ma, F.; Zhuo, Q.-Q.; Hao, Y. Influences of different oxidants on the characteristics of HfAlOx films deposited by atomic layer deposition. Chin. Phys. B 2013, 22, 027702. [Google Scholar] [CrossRef]
- Lee, C.-K.; Cho, E.; Lee, H.; Hwang, C.S.; Han, S. First-principles study on doping and phase stability of HfO2. Phys. Rev. B 2008, 78, 012102. [Google Scholar] [CrossRef]
- Zheng, L.; Cheng, X.; Yu, Y.; Xie, Y.; Li, X.; Wang, Z. Controlled direct growth of Al2O3-doped HfO2 films on graphene by H2O-based atomic layer deposition. Phys. Chem. Chem. Phys. 2015, 17, 3179–3185. [Google Scholar] [CrossRef] [PubMed]
- Hota, M.K.; Mahata, C.; Sarkar, C.K.; Maiti, C.K. High Density MIM Capacitors Using HfAlOx. ECS Trans. 2009, 25, 201–207. [Google Scholar]
- He, G.; Liu, M.; Zhu, L.Q.; Chang, M.; Fang, Q.; Zhang, L.D. Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100). Surf. Sci. 2005, 576, 67–75. [Google Scholar] [CrossRef]
- Cho, M.-H.; Chang, H.S.; Moon, D.W.; Kang, S.K.; Min, B.K.; Ko, D.-H.; Kim, H.S.; McIntyre, P.C.; Lee, J.H.; Ku, J.H.; et al. Interfacial characteristics of HfO2 films grown on strained Si0.7Ge0.3 by atomic-layer deposition. Appl. Phys. Lett. 2004, 84, 1171–1173. [Google Scholar] [CrossRef]
- Cho, M.-H.; Moon, D.W.; Park, S.A.; Kim, Y.K.; Jeong, K.; Kang, S.K.; Ko, D.-H.; Doh, S.J.; Lee, J.H.; Lee, N.I. Interfacial characteristics of N-incorporated HfAlO high-k thin films. Appl. Phys. Lett. 2004, 84, 5243–5245. [Google Scholar] [CrossRef]
- He, G.; Zhang, L.D.; Meng, G.W.; Li, G.H.; Fang, Q.; Zhang, J.P. Temperature-dependent structural stability and optical properties of ultrathin Hf–Al–O films grown by facing-target reactive sputtering. J. Appl. Phys. 2007, 102, 094103. [Google Scholar] [CrossRef]
- Suri, R.; Kirkpatrick, C.J.; Lichtenwalner, D.J.; Misra, V. Energy-band alignment of Al2O3 and HfAlO gate dielectrics deposited by atomic layer deposition on 4H–SiC. Appl. Phys. Lett. 2010, 96, 042903. [Google Scholar] [CrossRef]
- Mallik, S.; Mahata, C.; Hota, M.K.; Dalapati, G.K.; Chi, D.Z.; Sarkar, C.K.; Maiti, C.K. HfAlOx high-k gate dielectric on SiGe: Interfacial reaction, energy-band alignment, and charge trapping properties. Microelectron. Eng. 2010, 87, 2234–2240. [Google Scholar] [CrossRef]
- Nicollian, E.H.; Goetzberger, A. The Si-SiO2 Interface—Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique. Bell Syst. Tech. J. 1967, 46, 1055–1133. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, L.; Yu, B.; Shin, B.; Ahn, J.; McIntyre, P.C.; Asbeck, P.M.; Rodwell, M.J.W.; Taur, Y. A Distributed Model for Border Traps in Al2O3—InGaAs MOS Devices. IEEE Electron Device Lett. 2011, 32, 485–487. [Google Scholar] [CrossRef]
- Hou, Y.T.; Li, M.F.; Yu, H.Y.; Kwong, D.-L. Modeling of Tunneling Currents Through HfO2 and (HfO2)x(Al2O3)1-x Gate Stacks. IEEE Electron Device Lett. 2003, 24, 96–98. [Google Scholar] [CrossRef]
- Birner, S. The Nextnano Software for the Simulation of Semiconductor Heterostructures. Available online: https://www.nextnano.de/downloads/publications/abstracts/Abstract_TopologicalNanodeviceModeling_2014_Delft_Birner.pdf (accessed on 15 March 2019).
Samples ID (m,n) | Al2O3 (m) | HfO2 (n) | Number of Super Cycles (x) | Thickness (nm) | Standard Deviation (nm) |
---|---|---|---|---|---|
A (1,0) [Al2O3] | 1 | 0 | 50 | 5.867 | 0.125 |
B (1,1) | 1 | 1 | 25 | 6.715 | 0.040 |
C (1,2) | 1 | 2 | 17 | 5.825 | 0.063 |
D (1,3) | 1 | 3 | 13 | 5.722 | 0.095 |
E (1,4) | 1 | 4 | 10 | 5.626 | 0.101 |
F (1,9) | 1 | 9 | 5 | 5.170 | 0.043 |
G (2,6) | 2 | 6 | 7 | 6.710 | 0.022 |
H (3,3) | 3 | 3 | 9 | 7.363 | 0.093 |
I (0,1) [HfO2] | 0 | 1 | 50 | 5.100 | 0.089 |
Samples ID | Al-O [Al-2p] (eV) | Hf-O [4f7/2; 4f5/2] (eV) | Hf-Al-O [Al-2p; O-1s] (eV) | C-O [Al-2p; O-1s] (eV) |
---|---|---|---|---|
G (2,6) | 74.88 | 17.52; 18.9 | 74.42; 530.78 | 531.68 |
F (1,9) | 74.72 | 17.4;18.65 | 74.3; 530.68 | 531.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Kim, J.-G.; Kim, D.-H.; Kim, T.-W. Characterization of Al Incorporation into HfO2 Dielectric by Atomic Layer Deposition. Micromachines 2019, 10, 361. https://doi.org/10.3390/mi10060361
Rahman MM, Kim J-G, Kim D-H, Kim T-W. Characterization of Al Incorporation into HfO2 Dielectric by Atomic Layer Deposition. Micromachines. 2019; 10(6):361. https://doi.org/10.3390/mi10060361
Chicago/Turabian StyleRahman, Md. Mamunur, Jun-Gyu Kim, Dae-Hyun Kim, and Tae-Woo Kim. 2019. "Characterization of Al Incorporation into HfO2 Dielectric by Atomic Layer Deposition" Micromachines 10, no. 6: 361. https://doi.org/10.3390/mi10060361
APA StyleRahman, M. M., Kim, J.-G., Kim, D.-H., & Kim, T.-W. (2019). Characterization of Al Incorporation into HfO2 Dielectric by Atomic Layer Deposition. Micromachines, 10(6), 361. https://doi.org/10.3390/mi10060361