Intersubband Optical Nonlinearity of GeSn Quantum Dots under Vertical Electric Field
Abstract
1. Introduction
2. Theoretical Consideration
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Horiuchi, N. Strain-tunable dots. Nat. Photon. 2019, 13, 72. [Google Scholar] [CrossRef]
- Su, X.; Wang, Y.; Zhang, B.; Zhang, H.; Yang, K.; Wang, R.; He, J. Bismuth quantum dots as an optical saturable absorber for a 1.3 μm Q-switched solid-state laser. Appl. Opt. 2019, 58, 1621–1625. [Google Scholar] [CrossRef]
- Phillips, J.; Bhattacharya, P.; Kennerly, S.W.; Beekman, D.W.; Dutta, M. Self-assembled InAs-GaAs quantum-dot intersubband detectors. IEEE J. Quantum Electron. 1999, 35, 936–943. [Google Scholar] [CrossRef]
- Chen, W.; Deng, Z.; Guo, D.; Chen, Y.; Mazur, Y.I.; Maidaniuk, Y.; Benamara, M.; Salamo, G.J.; Liu, H.; Wu, J.; et al. Demonstration of InAs/InGaAs/GaAs quantum dots-in-a-well mid-wave infrared photodetectors grown on silicon substrate. J. Lightwave Technol. 2018, 13, 2572–2581. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, Q.; Chen, S.; Tang, M.; Mazur, Y.I.; Maidaniuk, Y.; Benamara, M.; Semtsiv, M.P.; Masselink, W.T.; Sablon, K.A.; et al. Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates. ACS Photon. 2016, 3, 749–753. [Google Scholar] [CrossRef]
- Zhuo, N.; Zhang, J.C.; Wang, F.J.; Liu, Y.H.; Zhai, S.Q.; Zhao, Y.; Wang, D.B.; Jia, Z.W.; Zhou, Y.H.; Wang, L.J.; et al. Room temperature continuous wave quantum dot cascade laser emitting at 7.2 μm. Opt. Expr. 2017, 25, 13807–13815. [Google Scholar] [CrossRef]
- Sabaeian, M.; Riyahi, M. Truncated pyramidal-shaped InAs/GaAs quantum dots in the presence of a vertical magnetic field: An investigation of THz wave emission and absorption. Phys. E Low-Dimensional Syst. Nanostruct. 2017, 89, 105–114. [Google Scholar] [CrossRef]
- Zibik, E.A.; Grange, T.; Carpenter, B.A.; Porter, N.E.; Ferreira, R.; Bastard, G.; Stehr, D.; Winnerl, S.; Helm, M.; Liu, H.Y.; et al. Long lifetimes of quantum-dot intersublevel transitions in the terahertz range. Nat. Mater. 2009, 8, 803–807. [Google Scholar] [CrossRef]
- Burnett, B.A.; Williams, B.S. Density matrix model for polarons in a terahertz quantum dot cascade laser. Phys. Rev. B 2014, 90, 15530. [Google Scholar] [CrossRef]
- Ünlü, S.; Karabulut, İ.; Şafak, H. Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Phys. E Low-Dimensional Syst. Nanostruct. 2006, 33, 319–324. [Google Scholar] [CrossRef]
- Vahdani, M.R.K.; Rezaei, G. Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots. Phys. Lett. A 2009, 373, 3079–3084. [Google Scholar] [CrossRef]
- Şahin, M. Third-order nonlinear optical properties of a one- and two-electron spherical quantum dot with and without a hydrogenic impurity. J. App. Phys. 2009, 106, 063710. [Google Scholar] [CrossRef]
- Karabulut, İ.; Baskoutas, S. Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity. J. Appl. Phys. 2008, 103, 073512. [Google Scholar] [CrossRef]
- Sabaeian, M.; Khaledi-Nasab, A. Size-dependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer. Appl. Opt. 2012, 51, 4176–4185. [Google Scholar] [CrossRef]
- Sabaeian, M.; Shahzadeh, M.; Farbod, M. Electric field-induced nonlinearity enhancement in strained semi-spheroid-shaped quantum dots coupled to wetting layer. AIP Adv. 2014, 4, 127105. [Google Scholar] [CrossRef]
- Baira, M.; Salem, B.; Madhar, N.A.; Ilahi, B. Linear and nonlinear intersubband optical properties of direct band gap GeSn quantum dots. Nanomaterials 2019, 9, 124. [Google Scholar] [CrossRef]
- Tian, S.-C.; Lu, H.-Y.; Zhang, H.; Wang, L.-J.; Shu, S.-L.; Zhang, X.; Hou, G.-Y.; Wang, Z.-Y.; Tong, C.-Z.; Wang, L.-J. Enhancing third- and fifth-order nonlinearity via tunneling in multiple quantum dots. Nanomaterials 2019, 9, 423. [Google Scholar] [CrossRef]
- Androvitsaneas, P.; Young, A.B.; Lennon, J.M.; Schneider, C.; Maier, S.; Hinchliff, J.J.; Atkinson, G.S.; Harbord, E.; Kamp, M.; Hofling, S.; et al. Efficient quantum photonic phase shift in a low Q-factor regime. ACS Photon. 2019, 6, 429–435. [Google Scholar] [CrossRef]
- Marris-Morini, D.; Vakarin, V.; Ramirez, J.M.; Liu, Q.; Ballabio, A.; Frigerio, J.; Montesinos, M.; Alonso-Ramos, C.; Le Roux, X.; Serna, S.; et al. Germanium-based integrated photonics from near- to mid-infrared applications. Nanophotonics 2018, 7, 1781–1793. [Google Scholar] [CrossRef]
- He, G.; Atwater, H. Interband transitions in SnxGe1−x alloys. Phys. Rev. Lett. 1997, 79, 1937–1940. [Google Scholar] [CrossRef]
- Chen, R.; Lin, H.; Huo, Y.; Hitzman, C.; Kamins, T.I.; Harris, J.S. Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy. Appl. Phys. Lett. 2011, 99, 181125. [Google Scholar] [CrossRef]
- Jiang, L.; Gallagher, J.D.; Senaratne, C.L.; Aoki, T.; Mathews, J.; Kouvetakis, J.; Menéndez, J. Compositional dependence of the direct and indirect band gaps in Ge1−ySny alloys from room temperature photoluminescence: implications for the indirect to direct gap crossover in intrinsic and n-type materials. Semicond. Sci. Technol. 2014, 29, 115028. [Google Scholar] [CrossRef]
- Toko, K.; Oya, N.; Saitoh, N.; Yoshizawa, N.; Suemasu, T. 70 °C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge. Appl. Phys. Lett. 2015, 106, 082109. [Google Scholar] [CrossRef]
- Taoka, N.; Capellini, G.; Schlykow, V.; Montanari, M.; Zaumseil, P.; Nakatsuka, O.; Zaima, S.; Schroeder, T. Electrical and optical properties improvement of GeSn layers formed at high temperature under well-controlled Sn migration. Mater. Sci. Semiconduct. Proc. 2017, 57, 48–53. [Google Scholar] [CrossRef]
- Chang, C.; Chang, T.W.; Li, H.; Cheng, H.H.; Soref, R.; Sun, G.; Hendrickson, J.R. Room-temperature 2-μm GeSn PIN homojunction light-emitting diode for inplane coupling to group-IV waveguides. Appl. Phys. Lett. 2017, 111, 141105. [Google Scholar] [CrossRef]
- Wirths, S.; Geiger, R.; Von Den Driesch, N.; Mussler, G.; Stoica, T.; Mantl, S.; Ikonic, Z.; Luysberg, M.; Chiussi, S.; Hartmann, J.M.; et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photon. 2015, 9, 88–92. [Google Scholar] [CrossRef]
- Dou, W.; Zhou, Y.; Margetis, J.; Ghetmiri, S.A.; Al-Kabi, S.; Du, W.; Liu, J.; Sun, G.; Soref, R.A.; Tolle, J. Optically pumped lasing at 3 μm from compositionally graded GeSn with tin up to 22.3%. Opt. Lett. 2018, 43, 4558–4561. [Google Scholar] [CrossRef]
- Stange, D.; Wirths, S.; Geiger, R.; Schulte-Braucks, C.; Marzban, B.; von den Driesch, N.; Mussler, G.; Zabel, T.; Stoica, T.; Hartmann, J.M.; et al. Optically pumped GeSn microdisk lasers on Si. ACS Photon. 2016, 3, 1279–1285. [Google Scholar] [CrossRef]
- Huang, B.J.; Lin, J.H.; Cheng, H.H.; Chang, G.E. GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms. Opt. Lett. 2018, 43, 1215–1218. [Google Scholar] [CrossRef]
- Pandey, A.K.; Basu, R.; Kumar, H.; Chang, G.E. Comprehensive analysis and optimal design of Ge/GeSn/Ge PNP infrared heterojunction phototransistors. IEEE J. Electron Devices Soc. 2019, 7, 118–126. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.; Alduraibi, M.; Hezam, M.; Ilahi, B. Sputter deposited GeSn alloy: A candidate material for temperature sensing layers in uncooled microbolometers. Infrared Phys. Technol. 2019, 97, 376–380. [Google Scholar] [CrossRef]
- Seifner, M.S.; Hernandez, S.; Bernardi, J.; Romano-Rodriguez, A.; Barth, S. Pushing the composition limit of anisotropic Ge1−xSnx nanostructures and determination of their thermal stability. Chem. Mater. 2017, 29, 9802–9813. [Google Scholar] [CrossRef]
- Esteves, R.J.A.; Ho, M.Q.; Arachchige, I.U. Nanocrystalline group IV alloy semiconductors: Synthesis and characterization of Ge1−xSnx quantum dots for tunable bandgaps. Chem. Mater. 2015, 27, 1559–1568. [Google Scholar] [CrossRef]
- Lozovoy, K.A.; Kokhanenko, A.P.; Voitsekhovskii, A.V. Critical thickness of transition from 2D to 3D growth and peculiarities of quantum dots formation in GexSi1−x/Sn/Si and Ge1−ySny/Si systems. Surf. Sci. 2018, 669, 45–49. [Google Scholar] [CrossRef]
- Nakamura, Y.; Masada, A.; Ichikawa, M. Quantum-confinement effect in individual Ge1−xSnx quantum dots on Si(111) substrates covered with ultrathin SiO2 films using scanning tunneling spectroscopy. Appl. Phys. Lett. 2007, 91, 013109. [Google Scholar] [CrossRef]
- Moontragoon, P.; Vukmirović, N.; Ikonić, Z.; Harrison, P. Electronic structure and optical properties of Sn and SnGe quantum dots. J. Appl. Phys. 2008, 103, 103712. [Google Scholar] [CrossRef]
- Ilahi, B. Design of direct band gap type I GeSn/Ge quantum dots for mid-IR light emitters on Si substrate. Phys. Status Solidi RRL 2017, 11, 1700047. [Google Scholar] [CrossRef]
- Baira, M.; Salem, B.; Madhar, N.A.; Ilahi, B. Tuning direct bandgap GeSn/Ge quantum dots’ interband and intraband useful emission wavelength: towards CMOS compatible infrared optical devices. Superlattice. Microstruct. 2018, 117, 31–35. [Google Scholar] [CrossRef]
- Ilahi, B.; Al-Saigh, R.; Salem, B. Impact of the wetting layer thickness on the emission wavelength of direct band gap GeSn/Ge quantum dots. Mater. Res. Express 2017, 4, 075026. [Google Scholar] [CrossRef]
- Zhang, L.; Hong, H.; Li, C.; Chen, S.; Huang, W.; Wang, J.; Wang, H. High-Sn fraction GeSn quantum dots for Si-based light source at 1.55 μm. Appl. Phys. Express 2019. [Google Scholar] [CrossRef]
- Berbezier, I.; Ronda, A.; Portavoce, A. SiGe nanostructures: new insights into growth processes. J. Phys. Condens. Matter 2002, 14, 8283. [Google Scholar] [CrossRef]
- Melnik, R.V.N.; Willatzen, M. Bandstructures of conical quantum dots with wetting layers. Nanotechnology 2014, 15, 1. [Google Scholar] [CrossRef]
- Souaf, M.; Baira, M.; Nasr, O.; Alouane, M.; Maaref, H.; Sfaxi, L.; Ilahi, B. Investigation of the InAs/GaAs quantum dots’ size: dependence on the strain reducing layer’s position. Materials 2015, 8, 4699–4709. [Google Scholar] [CrossRef]
- Narvaez, G.A.; Zunger, A. Calculation of conduction-to-conduction and valence-to-valence transitions between bound states in InGaAs/GaAs quantum dots. Phys. Rev. B 2007, 75, 085306. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baira, M.; Salem, B.; Ahamad Madhar, N.; Ilahi, B. Intersubband Optical Nonlinearity of GeSn Quantum Dots under Vertical Electric Field. Micromachines 2019, 10, 243. https://doi.org/10.3390/mi10040243
Baira M, Salem B, Ahamad Madhar N, Ilahi B. Intersubband Optical Nonlinearity of GeSn Quantum Dots under Vertical Electric Field. Micromachines. 2019; 10(4):243. https://doi.org/10.3390/mi10040243
Chicago/Turabian StyleBaira, Mourad, Bassem Salem, Niyaz Ahamad Madhar, and Bouraoui Ilahi. 2019. "Intersubband Optical Nonlinearity of GeSn Quantum Dots under Vertical Electric Field" Micromachines 10, no. 4: 243. https://doi.org/10.3390/mi10040243
APA StyleBaira, M., Salem, B., Ahamad Madhar, N., & Ilahi, B. (2019). Intersubband Optical Nonlinearity of GeSn Quantum Dots under Vertical Electric Field. Micromachines, 10(4), 243. https://doi.org/10.3390/mi10040243