Single-Sided Near-Field Wireless Power Transfer by A Three-Dimensional Coil Array
Abstract
:1. Introduction
2. Evolution of Halbach Arrays
3. Experimental Validation
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Shin, J.; Shin, S.; Kim, Y.; Ahn, S.; Lee, S.; Jung, G.; Jeon, S.-J.; Cho, D.H. Design and Implementation of Shaped Magnetic Resonance Based Wireless Power Transfer System for Roadway-Powered Moving Electric Vehicles. IEEE Trans. Ind. Electron. 2014, 61, 1179–1192. [Google Scholar] [CrossRef]
- Kim, D.; Hwang, K.; Park, J.; Park, H.H.; Ahn, S. High-Efficiency Wireless Power and Force Transfer for a Micro-Robot Using a Multiaxis AC/DC Magnetic Coil. IEEE Trans. Magn. 2017, 53, 2015. [Google Scholar] [CrossRef]
- Xue, R.F.; Cheng, K.W.; Je, M. High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 867–874. [Google Scholar] [CrossRef]
- Ramrakhyani, K.; Mirabbasi, S.; Chiao, M. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 48–63. [Google Scholar] [CrossRef]
- Chen, C.-J.; Chu, T.-H.; Lin, C.-L.; Jou, Z.-C. A Study of Loosely Coupled Coils for Wireless Power Transfer. IEEE Trans. Circuits Syst. II Express Briefs 2010, 57, 536–540. [Google Scholar] [CrossRef]
- Kiani, M.; Jow, U.M.; Ghovanloo, M. Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 579–591. [Google Scholar] [CrossRef]
- Paul, C.R. Introduction to Electromagnetic Compatibility; Wiley: Hoboken, NJ, USA, 1992. [Google Scholar]
- Kim, H.; Song, C.; Kim, D.H.; Jung, D.H.; Kim, I.M.; Kim, Y.I.; Kim, J.; Ahn, S.; Kim, J. Coil design and measurements of automotive magnetic resonant wireless charging system for high-efficiency and low magnetic field leakage. IEEE Trans. Microw. Theory Tech. 2016, 64, 383–400. [Google Scholar] [CrossRef]
- IEEE-SA Standards Board. IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz; The Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 2005. [Google Scholar]
- Smoots, K.; Vogel, R.L. Cardiac Pacing and Defibrillation in Paediatric and Congenital Heart Disease; First; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Hajiaghajani, A.; Hashemi, S.; Abdolali, A. Adaptable Setups for Magnetic Drug Targeting in Human Muscular Arteries: Design and Implementation. J. Magn. Magn. Mater. 2017, 438C, 173–180. [Google Scholar] [CrossRef]
- Hajiaghajani, A.; Abdolali, A. Magnetic field pattern synthesis and its application in targeted drug delivery: Design and implementation. Bioelectromagnetics 2018, 338, 325–338. [Google Scholar] [CrossRef]
- Hashemi, S.; Hajiaghajani, A.; Abdolali, A. Noninvasive Blockade of Action Potential by Electromagnetic Induction. Available online: https://arxiv.org/ftp/arxiv/papers/1809/1809.06199.pdf (accessed on 13 March 2019).
- Kósa, G.; Jakab, P.; Székely, G.; Hata, N. MRI driven magnetic microswimmers. Biomed. Microdevices 2012, 14, 165–178. [Google Scholar] [CrossRef]
- Kósa, G.; Jakab, P.; Jolesz, F.; Hata, N. Swimming Capsule Endoscope using static and RF magnetic field of MRI for propulsion. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 2922–2927. [Google Scholar]
- Martel, S.; Felfoul, O.; Mathieu, J.-B.; Chanu, A.; Tamaz, S.; Mohammadi, M.; Mankiewicz, M.; Tabatabaei, N. MRI-based Medical Nanorobotic Platform for the Control of Magnetic Nanoparticles and Flagellated Bacteria for Target Interventions in Human Capillaries. Int. J. Rob. Res. 2009, 28, 1169–1182. [Google Scholar] [CrossRef] [Green Version]
- Vartholomeos, P.; Fruchard, M.; Ferreira, A.; Mavroidis, C. MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Annu. Rev. Biomed. Eng. 2011, 13, 157–184. [Google Scholar] [CrossRef]
- Kim, D.; Hwang, K.; Park, J.; Park, H.H.; Ahn, S. Miniaturization of implantable micro-robot propulsion using a wireless power transfer system. Micromachines 2017, 8, 269. [Google Scholar] [CrossRef]
- Uvet, H.; Demircali, A.A.; Kahraman, Y.; Varol, R.; Kose, T.; Erkan, K. Micro-UFO (untethered floating object): A highly accurate microrobot manipulation technique. Micromachines 2018, 9, 126. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, S.; Guo, S.; Guo, J. Performance Evaluation of a Magnetically Actuated Capsule Microrobotic System for Medical Applications. Micromachines 2018, 9, 641. [Google Scholar] [CrossRef]
- Bi, C.; Guix, M.; Johnson, B.V.; Jing, W.; Cappelleri, D.J. Design of microscale magnetic tumbling robots for locomotion in multiple environments and complex terrains. Micromachines 2018, 9, 68. [Google Scholar] [CrossRef]
- Honda, T.; Arai, K.I.; Ishiyama, K. Micro swimming mechanisms propelled by external magnetic fields. IEEE Trans. Magn. 1996, 32, 5085–5087. [Google Scholar] [CrossRef]
- Jawad, A.M.; Nordin, R.; Gharghan, S.K.; Jawad, H.M.; Ismail, M. Opportunities and challenges for near-field wireless power transfer: A review. Energies 2017, 10, 1022. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kim, J.; Kim, J.; Kong, S.; Kim, H.; Suh, I.S.; Suh, N.P.; Cho, D.H.; Kim, J.; Ahn, S. Coil design and shielding methods for a magnetic resonant wireless power transfer system. Proc. IEEE 2013, 101, 1332–1342. [Google Scholar] [CrossRef]
- Si, P.; Hu, P.; Malpas, S.; Budgett, D. A frequency control method for regulating wireless power to implantable devices. Biomed. Circuits Syst. 2008, 2, 22–29. [Google Scholar] [CrossRef]
- Hajiaghajani, A.; Abdolali, A. Patterning of Subwavelength Magnetic Fields Along a Line by Means of Spatial Spectrum: Design and Implementation. IEEE Magn. Lett. 2017, 8, 1–4. [Google Scholar] [CrossRef]
- Abdolali, A.; Mohtadi Jafari, A. Flexible Control of Magnetic Fields by Shaped-Optimized Three Dimensional Coil Arrays. IEEE Magn. Lett. 2018, 10, 1–5. [Google Scholar] [CrossRef]
- Jafari, A.M.; Abdolali, A. Manipulation of the electromagnetic near-fields by 3D printed coils: from design to fabrication. IET Microw. Antennas Propag. 2018, 12, 1461–1465. [Google Scholar] [CrossRef]
- Halbach, K. Application of permanent magnets in accelerators and electron storage rings. J. Appl. Phys. 1985, 57, 3605–3608. [Google Scholar] [CrossRef]
- Barnsley, L.C.; Carugo, D.; Stride, E. Optimized shapes of magnetic arrays for drug targeting applications. J. Phys. D Appl. Phys. 2016, 49, 225501. [Google Scholar] [CrossRef] [Green Version]
- Barnsley, L.C.; Carugo, D.; Owen, J.; Stride, E. Halbach arrays consisting of cubic elements optimised for high field gradients in magnetic drug targeting applications. Phys. Med. Biol. 2015, 60, 8303–8327. [Google Scholar] [CrossRef]
- Nacev, A. Magnetic Drug Targeting: Developing the Basics; University of Maryland, College Park: College Park, MD, USA, 2013. [Google Scholar]
- Kim, H.; Hwang, K.; Park, J.; Kim, D.; Ahn, S. Design of single-sided AC magnetic field generating coil for wireless power transfer. In Proceedings of the 2017 IEEE Wireless Power Transfer Conference (WPTC), Taipei, Taiwan, 10–12 May 2017; pp. 1–3. [Google Scholar]
- Griffiths, D.J. Introduction to Electrodynamics; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Overfelt, P.L. Near fields of the constant current thin circular loop antenna of arbitrary radius. IEEE Trans. Antennas Propag. 1996, 44, 166–171. [Google Scholar] [CrossRef]
Object/Quantity | Rx Coil (Probe) | Tx Coil (3D Coils) |
---|---|---|
AC Resistance | 0.5 Ω | 7.8 Ω |
Inductance | 11 µH | 9 µH |
Mutual Ind. Peak at z = +9.6 mm | 37.8 nH | |
Mutual Ind. Peak at z = −9.6 mm | 9.0 nH |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajiaghajani, A.; Ahn, S. Single-Sided Near-Field Wireless Power Transfer by A Three-Dimensional Coil Array. Micromachines 2019, 10, 200. https://doi.org/10.3390/mi10030200
Hajiaghajani A, Ahn S. Single-Sided Near-Field Wireless Power Transfer by A Three-Dimensional Coil Array. Micromachines. 2019; 10(3):200. https://doi.org/10.3390/mi10030200
Chicago/Turabian StyleHajiaghajani, Amirhossein, and Seungyoung Ahn. 2019. "Single-Sided Near-Field Wireless Power Transfer by A Three-Dimensional Coil Array" Micromachines 10, no. 3: 200. https://doi.org/10.3390/mi10030200
APA StyleHajiaghajani, A., & Ahn, S. (2019). Single-Sided Near-Field Wireless Power Transfer by A Three-Dimensional Coil Array. Micromachines, 10(3), 200. https://doi.org/10.3390/mi10030200