Next Article in Journal
Discrimination of Red Wines with a Gas-Sensor Array Based on a Surface-Acoustic-Wave Technique
Previous Article in Journal
Proton Irradiation Effects on the Time-Dependent Dielectric Breakdown Characteristics of Normally-Off AlGaN/GaN Gate-Recessed Metal-Insulator-Semiconductor Heterostructure Field Effect Transistors
Open AccessArticle

A Novel Expanding Mechanism of Gastrointestinal Microrobot: Design, Analysis and Optimization

1
School of electronic information and electrical engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2
Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
*
Author to whom correspondence should be addressed.
Micromachines 2019, 10(11), 724; https://doi.org/10.3390/mi10110724
Received: 13 September 2019 / Revised: 23 October 2019 / Accepted: 24 October 2019 / Published: 26 October 2019
In order to make the gastrointestinal microrobot (GMR) expand and anchor in the gastrointestinal tract reliably, a novel expanding mechanism of the GMR is proposed in this paper. The overlapping expanding arm is designed to be used to increase the variable diameter ratio (ratio of fully expanded diameter to fully folded diameter) to 3.3, which makes the robot more adaptable to the intestinal tract of different sections of the human body. The double-layer structure of the expanding arm increases the contact area with the intestine, reducing the risk of intestinal damage. The kinematics and mechanical model of the expanding arm are established, and the rigid velocity, rigid acceleration, and expanding force of the expanding arm are analyzed. The elastodynamics model of the expanding arm is established. Through the finite element analysis (FEA), the velocity, acceleration, and the value and distribution of the stress of the expanding arm under elastic deformation are obtained. Based on the elastodynamics analysis, the structure of the expanding arm is optimized. By the structure optimization, the thickness of the expanding mechanism is reduced by 0.4mm, the weight is reduced by 31%, and the stress distribution is more uniform. Through the mechanical test, the minimum expanding force of the expanding mechanism is 1.3 N and the maximum expanding force is 6.5 N. Finally, the robot is tested in the rigid pipeline and the isolated intestine to verify the reliability and safety of the expanding mechanism. View Full-Text
Keywords: gastrointestinal microrobot; expanding mechanism; elastodynamics; finite element analysis; structure optimization gastrointestinal microrobot; expanding mechanism; elastodynamics; finite element analysis; structure optimization
Show Figures

Figure 1

MDPI and ACS Style

Wang, W.; Yan, G.; Wang, Z.; Jiang, P.; Meng, Y.; Chen, F.; Xue, R. A Novel Expanding Mechanism of Gastrointestinal Microrobot: Design, Analysis and Optimization. Micromachines 2019, 10, 724.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop