Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms
Abstract
:1. Ochratoxin A
2. Ochratoxin A Producing Fungi
3. Ochratoxin A Biosynthetic Pathway
3.1. OTA Related Metabolites
3.2. OTA Biosynthesis Genes
3.2.1. Polyketide Synthase (PKS) and Non-Ribosomal Peptide Synthetase (NRPS)
3.2.2. Halogenase and P450 Oxidase
3.3. Putative OTA Biosynthetic Pathway
4. Regulation Mechanisms of Ochratoxin A Biosynthesis
4.1. Specific Regulators of OTA Pathway
4.2. General Regulatory Pathways for OTA Biosynthesis
4.2.1. Velvet Complex Controls OTA Production
4.2.2. Oxidative Stress
4.2.3. pH Regulates OTA Biosynthesis via PacC
4.2.4. Nutrient Sources on OTA Production via CreA and AreA
4.2.5. Osmotic Stress
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Van der Merwe, K.J.; Steyn, P.S.; Fourie, L.; Scott, D.B.; Theron, J.J. Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus with. Nature 1965. [Google Scholar] [CrossRef]
- El Khoury, A.; Atoui, A. Ochratoxin A: General overview and actual molecular status. Toxins 2010, 2, 461–493. [Google Scholar] [CrossRef] [PubMed]
- Lea, T.; Steien, K.; Størmer, F.C. Mechanism of ochratoxin A-induced immunosuppression. Mycopathologia 1989, 107, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Pfohl-Leszkowicz, A.; Pinelli, E.; Bartsch, H.; Mohr, U.; Castegnaro, M. Sex- and strain-specific expression of cytochrome P450s in ochratoxin A-induced genotoxicity and carcinogenicity in rats. Mol. Carcinogenes. 1998, 23, 76–85. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC); World Health Organization (WHO). Some naturally occurring substances: Food items and constituents, heterocyclic aromatic aminesand mycotoxins. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1993; p. 56. [Google Scholar]
- Commission, E. Commission regulation (EC) No. 1881/2006 of 19 december 2006 Setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union L 2006, I364, 4–5. [Google Scholar]
- Futagami, T.; Mori, K.; Yamashita, A.; Wada, S.; Kajiwara, Y.; Takashita, H.; Omori, T.; Takegawa, K.; Tashiro, K.; Kuhara, S. Genome sequence of the white koji mold Aspergillus kawachiiIFO 4308, used for brewing the japanese distilled spirit shochu. Eukaryot. Cell 2011, 10, 1586–1587. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Paniel, N.; Rhouati, A.; Marty, J.-L.; Barthelmebs, L. Recent advances in ochratoxin A-producing fungi detection based on PCR methods and ochratoxin A analysis in food matrices. Food Control 2012, 26, 401–415. [Google Scholar] [CrossRef]
- Mantle, P.G. Risk assessment and the importance of ochratoxins. Int. Biodeterior. Biodegrad. 2002, 50, 143–146. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Frank, J.M.; Houbraken, J.A.M.P.; Kuijpers, A.F.A.; Samson, R.A. New ochratoxin A producing species of Aspergillus section Circumdati. Stud. Mycol. 2004, 50, 23–43. [Google Scholar]
- Varga, J.; Kevei, E.; Rinyu, E.; Téren, J.; Kozakiewicz, Z. Ochratoxin production by Aspergillus species. Appl. Environ. Microbiol. 1996, 62, 4461–4464. [Google Scholar] [PubMed]
- Paul, B.; Baker, J.L.; Doster, M.A.; Michailides, T.J.; Mahoney, N.E. Ochratoxin production by the Aspergillusochraceus group and Aspergillus alliaceus. Appl. Environ. Microbiol. 2002, 68, 2326–2329. [Google Scholar]
- Rizzo, A.; Eskola, M.; Atroshi, F. Ochratoxin A in Cereals, Foodstuffs and Human Plasma. Europ. J. Plant Pathol. 2002, 108, 631–637. [Google Scholar] [CrossRef]
- Robert, A.; Samson, J.A.M.P.H.; Angelina, F.A.; Kuijpers, J.; Frank, M.; Frisvad, J.C. New ochratoxin A or sclerotium producing species in Aspergillus section nigri. Stud. Mycol. 2004, 50, 45–61. [Google Scholar]
- Gil-Serna, J.; Patiño, B.; Cortes, L.; Gonzalez-Jaen, M.T.; Vazquez, C. Aspergillus steynii and Aspergillus westerdijkiae as potential risk of OTA contamination in food products in warm climates. Food Microbiol. 2015, 46, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Gil-Serna, J.; Vázquez, C.; Sandino, F.G.; Valle, A.M.; González-Jaén, M.T.; Patiño, B. Evaluation of growth and ochratoxin A production by Aspergillus steynii and Aspergillus westerdijkiae in green-coffee based medium under different environmental conditions. Food Res. Int. 2014, 61, 127–131. [Google Scholar] [CrossRef]
- Perrone, G.; Stea, G.; Epifani, F.; Varga, J.; Frisvad, J.C.; Samson, R.A. Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal Biol. 2011, 115, 1138–1150. [Google Scholar] [CrossRef] [PubMed]
- Seung-Beom, H.; Mina, L.; Dae-Ho, K.; Janos, V.; Frisvad, J.C.; Giancarlo, P.; Katsuya, G.; Osamu, Y.; Masayuki, M.; Jos, H. Aspergillus luchuensis, an industrially important black Aspergillus in east asia. PLoS ONE 2013, 8, e63769. [Google Scholar]
- Davolos, D.; Pietrangeli, B. A molecular and bioinformatic study on the ochratoxin A (OTA)-producing Aspergillus affinis (section Circumdati). Mycotox Res. 2014, 30, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Bogs, C.; Battilani, P.; Geisen, R. Development of a molecular detection and differentiation system for ochratoxin A producing penicillium species and its application to analyse the occurrence of Penicillium nordicum in cured meats. Int. J. Food Microbiol. 2006, 107, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Heydt, M.; Graf, E.; Stoll, D.; Geisen, R. The biosynthesis of ochratoxin A by Penicillium as one mechanism for adaptation to NaCl rich foods. Food Microbiol. 2012, 29, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.J.; Tang, D.; Zhou, Y.Q.; Sun, B.D.; Li, X.J.; Wang, L.Z.; Gao, W.W. Identification of ochratoxin A producing fungi associated with fresh and dry liquorice. PLoS ONE 2013, 8, e78285. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.E.; Posada, F.; Peterson, S.W.; Gianfagna, T.J.; Chaves, F. Penicillium species endophytic in coffee plants and ochratoxin A production. Mycologia 2006, 98, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Steyn, P.S.; Holzapfel, C.W.; Ferreira, N.P. The biosynthesis of the ochratoxins, metabolites of Aspergillus ochraceus. Phytochemistry 1970, 9, 1977–1983. [Google Scholar] [CrossRef]
- Ruhland, M.; Engelhardt, G.; Wallnöter, P.R. Production of 14C-ochratoxin a by Penicillium verrucosum sp. 1761 in liquid culture. Mycotox Res. 1996, 12, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, M.; Maebayashi, Y.; Miyaki, K. Biosynthesis of ochratoxin A. Tetrahedron Lett. 1971, 12, 2301–2303. [Google Scholar] [CrossRef]
- Ferreira, N.P.; Pitout, M.J. The biogenesis of ochratoxin. J. S. Afr. Chem. Inst. 1969, 22, S1–S8. [Google Scholar]
- Steyn, P.S.; Holzapfel, C.W. The synthesis of ochratoxins A and B metabolites of Aspergillus ochraceus wilh. Tetrahedron 1967, 23, 4449–4461. [Google Scholar] [CrossRef]
- Moore, J.H.; Davis, N.D.; Diener, U.L. Mellein and 4-hydroxymellein production by Aspergillus ochraceus wilhelm. Appl. Microbiol. 1972, 23, 1067–1072. [Google Scholar] [PubMed]
- Delgadillo, I. Isolation of secondary metabolites of Aspergillus ochraceus by HPLC. Mycotox Res. 1986, 2, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.P.; Mantle, P.G. Biosynthesis of ochratoxins by Aspergillus ochraceus. Phytochemistry 2001, 58, 709–716. [Google Scholar] [CrossRef]
- Merwe, K.J.V.D.; Steyn, P.S.; Fourie, L. Mycotoxins. Part II. The constitution of ochratoxins A, B, and C, metabolites of Aspergillus ochraceus wilh. J. Chem. Soc. 1965, 7083–7088. [Google Scholar] [CrossRef]
- Searcy, J.W.; Davis, N.D.; Diener, U.L. Biosynthesis of ochratoxin A. Appl. Microbiol. 1969, 18, 622–627. [Google Scholar] [PubMed]
- Gallo, A.; Bruno, K.S.; Solfrizzo, M.; Perrone, G.; Mule, G.; Visconti, A.; Baker, S.E.; Gallo, A.; Bruno, K.S.; Solfrizzo, M.; et al. New insight into the ochratoxin A biosynthetic pathway through deletion of a nonribosomal peptide synthetase gene in Aspergillus carbonarius. Appl. Environ. Microbiol. 2012, 78, 8208–8218. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.D.; Strong, F.M.; Smalley, E.B. Incorporation of chlorine-36 into ochratoxin A. Appl. Microbiol. 1971, 22, 276–277. [Google Scholar] [PubMed]
- Gallo, A.; Ferrara, M.; Perrone, G. Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Toxins 2013, 5, 717–742. [Google Scholar] [CrossRef] [PubMed]
- Huffman, J.; Gerber, R.; Du, L. Recent advancements in the biosynthetic mechanisms for polyketide-derived mycotoxins. Biopolymers 2010, 93, 764–776. [Google Scholar] [CrossRef] [PubMed]
- Farber, P.; Geisen, R. Investigation of ochratoxin A biosynthetic genes in Penicillium verrucosum by DDRT-PCR experiments: Differential expression of OTA genes. Mycotox Res. 2001, 17 (Suppl. 2), 150–155. [Google Scholar] [CrossRef] [PubMed]
- Farber, P.; Geisen, R. Analysis of differentially-expressed ochratoxin A biosynthesis genes of Penicillium nordicum. Eur. J. Plant Pathol. 2004, 110, 661–669. [Google Scholar] [CrossRef]
- Karolewiez, A.; Bogs, C.; Geisen, R. Genetic background of ochratoxin A production in Penicillium. Mycotox Res. 2005, 21, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Karolewiez, A.; Geisen, R. Cloning a part of the ochratoxin A biosynthetic gene cluster of Penicillium nordicum and characterization of the ochratoxin polyketide synthase gene. Syst. Appl. Microbiol. 2005, 28, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Geisen, R.; Schmidt-Heydt, M.; Karolewiez, A. A gene cluster of the ochratoxin A biosynthetic genes in Penicillium. Mycotox Res. 2006, 22, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; Wang, Q.; Liu, F.; Selvaraj, J.N.; Liu, L.; Xing, F.; Zhao, Y.; Zhou, L.; Liu, Y. Functional characterization of new polyketide synthase genes involved in ochratoxin A biosynthesis in Aspergillus ochraceus fc-1. Toxins 2015, 7, 2723–2738. [Google Scholar] [CrossRef] [PubMed]
- Bacha, N.; Atoui, A.; Mathieu, F.; Liboz, T.; Lebrihi, A.; Bacha, N.; Atoui, A.; Mathieu, F.; Liboz, T.; Lebrihi, A. Aspergillus westerdijkiae polyketide synthase gene “aoks1” is involved in the biosynthesis of ochratoxin A. Fungal Genet. Biol. 2009, 46, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, A.; Knox, B.P.; Bruno, K.S.; Solfrizzo, M.; Baker, S.E.; Perrone, G.; Gallo, A.; Knox, B.P.; Bruno, K.S.; Solfrizzo, M.; et al. Identification and characterization of the polyketide synthase involved in ochratoxin A biosynthesis in Aspergillus carbonarius. Int. J. Food Microbiol. 2014, 179, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Coghlan, A.; O’Callaghan, J.; Garcia-Estrada, C.; Martin, J.-F.; Dobson, A.D.W. Functional characterization of the polyketide synthase gene required for ochratoxin A biosynthesis in Penicillium verrucosum. Int. J. Food Microbiol. 2013, 162, 311. [Google Scholar] [CrossRef]
- Pel, H.J.; de Winde, J.H.; Archer, D.B.; Dyer, P.S.; Hofmann, G.; Schaap, P.J.; Turner, G.; de Vries, R.P.; Albang, R.; Albermann, K.; et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 2007, 25, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Sartori, D.; Massi, F.P.; Ferranti, L.S.; Fungaro, M.H.P. Identification of genes differentially expressed between ochratoxin-producing and non-producing strains of Aspergillus westerdijkiae. Indian J. Microbiol. 2014, 54, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Birch, A.J.; Fitton, P.; Pride, E.; Ryan, A.J.; Smith, H.; Whalley, W.B. Studies in relation to biosynthesis. Part XVII. Sclerotiorin, citrinin, and citromycetin. J. Chem. Soc. 1958, 4576–4581. [Google Scholar] [CrossRef]
- Nitta, K.; Yamamoto, Y.; Inoue, T.; Hyodo, T. Studies on the metabolic products of oospora astringenes. VII. Biogenesis of oospolactone and oosponol. Chem. Pharm. Bull. 1966, 14, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Huff, W.; Hamilton, P. Mycotoxins-their biosynthesis in fungi: Ochratoxins-metabolites of combined pathways. J. Food Prot. 1979, 42, 815–820. [Google Scholar]
- Bacha, N.; Mathieu, F.; Liboz, T.; Lebrihi, A.; Bacha, N.; Mathieu, F.; Liboz, T.; Lebrihi, A. Polyketide synthase gene aolc35-12 controls the differential expression of ochratoxin a gene aoks1 in Aspergillus westerdijkiae. World Mycotoxin J. 2012, 5, 177–186. [Google Scholar] [CrossRef]
- Abbas, A.; Valez, H.; Dobson, A.D.W. Analysis of the effect of nutritional factors on OTA and OTB biosynthesis and polyketide synthase gene expression in Aspergillus ochraceus. Int. J. Food Microbiol. 2009, 135, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Payne, G.A.; Nystrom, G.J.; Bhatnagar, D.; Cleveland, T.E.; Woloshuk, C.P. Cloning of the afl-2 gene involved in aflatoxin biosynthesis from Aspergillus flavus. Appl. Environ. Microbiol. 1993, 59, 156–162. [Google Scholar] [PubMed]
- Fernandes, M.; Keller, N.P.; Adams, T.H. Sequence-specific binding by Aspergillus nidulansAflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Mol. Microbiol. 1998, 28, 1355–1365. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.; Butchko, R.M.; Proctor, R. The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot. Cell 2007, 6, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Park, A.R.; Son, H.; Min, K.; Park, J.; Goo, J.H.; Rhee, S.; Chae, S.K.; Lee, Y.W. Autoregulation of ZEB2 expression for zearalenone production in Fusarium graminearum. Mol. Microbiol. 2015, 97, 942–956. [Google Scholar] [CrossRef] [PubMed]
- Merhej, J.; Richard-Forget, F.; Barreau, C. Regulation of trichothecene biosynthesis in Fusarium: Recent advances and new insights. Appl. Microbiol. Biotechnol. 2011, 91, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Peplow, A.W.; Tag, A.G.; Garifullina, G.F.; Beremand, M.N. Identification of new genes positively regulated by Tri10 and a regulatory network for trichothecene mycotoxin production. Appl. Environ. Microbiol. 2003, 69, 2731–2736. [Google Scholar] [CrossRef] [PubMed]
- Tag, A.G.; Garifullina, G.F.; Peplow, A.W.; Ake, C.; Phillips, T.D.; Hohn, T.M.; Beremand, M.N. A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Appl. Environ. Microbiol. 2001, 67, 5294–5302. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.H.; Hohn, T.M.; McCormick, S.P.; Desjardins, A.E. Tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Appl. Environ. Microbiol. 1995, 61, 1923–1930. [Google Scholar] [PubMed]
- Tannous, J.; Khoury, R.E.; Snini, S.P.; Lippi, Y.; Khoury, A.E.; Atoui, A.; Lteif, R.; Oswald, I.P.; Puel, O. Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum. Int. J. Food Microbiol. 2014, 189, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Perrone, G.; Solfrizzo, M.; Epifani, F.; Abbas, A.; Dobson, A.D.W.; Mule, G. Characterisation of a pks gene which is expressed during ochratoxin A production by Aspergillus carbonarius. Int. J. Food Microbiol. 2009, 129, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.-M.; Szewczyk, E.; Davidson, A.D.; Keller, N.; Oakley, B.R.; Wang, C.C.C. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J. Am. Chem. Soc. 2009, 131, 2965–2970. [Google Scholar] [CrossRef] [PubMed]
- Gaffoor, I.; Trail, F. Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl. Environ. Microbiol. 2006, 72, 1793–1799. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.T.; Lee, Y.R.; Jin, J.; Han, K.H.; Kim, H.; Kim, J.C.; Lee, T.; Yun, S.H.; Lee, Y.W. Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol. Microbiol. 2005, 58, 1102–1113. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.E.; Kroken, S.; Inderbitzin, P.; Asvarak, T.; Li, B.-Y.; Shi, L.; Yoder, O.C.; Turgeon, B.G. Two polyketide synthase-encoding genes are required for biosynthesis of the polyketide virulence factor, T-toxin, by Cochliobolus heterostrophus. Mol. Plant-Microbe Interact. 2006, 19, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Suzuki, T.; Ono, C.; Iwamoto, K.; Hosobuchi, M.; Yoshikawa, H. Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol. Genet. Genom. 2002, 267, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.; Auclair, K.; Kendrew, S.G.; Park, C.; Vederas, J.C.; Richard Hutchinson, C. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 1999, 284, 1368–1372. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, L.; Davis, C.R.; Roach, C.; Nguyen, D.K.; Aldrich, T.; Mcada, P.C.; Reeves, C.D. Lovastatin biosynthesis in Aspergillus terreus: Characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. Chem. Biol. 1999, 6, 429–439. [Google Scholar] [CrossRef]
- Ozgür, B.; Sven, K.; Min, N.; Jin Woo, B.; Kerstin, H.; Oliver, V.; Susanna, B.-S.; Nak-Jung, K.; Nancy P, K.; Jae-Hyuk, Y. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 2008, 320, 1504–1056. [Google Scholar]
- Stinnett, S.M.; Espeso, E.A.; Cobe09o, L.; Araújo-Bazán, L.; Calva, A.M. Aspergillus nidulansVeA subcellular localization is dependent on the importin alpha carrier and on light. Mol. Microbiol. 2007, 63, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.H.; Moussa, A.E. Influence of white light, near-UV irradiation and other environmental conditions on production of aflatoxin B-1 by Aspergillus flavus and ochratoxin A by Aspergillus ochraceus. Nahrung-Food 1997, 41, 150–154. [Google Scholar] [CrossRef]
- Schmidt-Heydt, M.; Ruefer, C.; Raupp, F.; Bruchmann, A.; Perrone, G.; Geisen, R. Influence of light on food relevant fungi with emphasis on ochratoxin producing species. Int. J. Food Microbiol. 2011, 145, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, F.; Schmidt-Heydt, M.; Haidukowski, M.; Geisen, R.; Logrieco, A.; Mule, G. Influence of light on growth, conidiation and the mutual regulation of fumonisin B-2 and ochratoxin A biosynthesis by Aspergillus niger. World Mycotoxin J. 2012, 5, 169–176. [Google Scholar] [CrossRef]
- Crespo-Sempere, A.; Marin, S.; Sanchis, V.; Ramos, A.J. VeA and LaeA transcriptional factors regulate ochratoxin A biosynthesis in Aspergillus carbonarius. Int. J. Food Microbiol. 2013, 166, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Shwab, E.K.; Bok, J.W.; Tribus, M.; Galehr, J.; Graessle, S.; Keller, N.P. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot. Cell 2007, 6, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Reverberi, M.; Zjalic, S.; Punelli, F.; Ricelli, A.; Fabbri, A.A.; Fanelli, C. Apyap1 affects aflatoxin biosynthesis during Aspergillus parasiticus growth in maize seeds. Food Addit. Contam. 2007, 24, 1070–1075. [Google Scholar] [CrossRef] [PubMed]
- Reverberi, M.; Gazzetti, K.; Punelli, F.; Scarpari, M.; Zjalic, S.; Ricelli, A.; Fabbri, A.A.; Fanelli, C. Aoyap1 regulates OTA synthesis by controlling cell redox balance in Aspergillus ochraceus. Appl. Microbiol. Biotechnol. 2012, 95, 1293–1304. [Google Scholar] [CrossRef] [PubMed]
- Reverberi, M.; Punelli, F.; Scarpari, M.; Camera, E.; Zjalic, S.; Ricelli, A.; Fanelli, C.; Fabbri, A.A.; Reverberi, M.; Punelli, F.; et al. Lipoperoxidation affects ochratoxin A biosynthesis in Aspergillus ochraceus and its interaction with wheat seeds. Appl. Microbiol. Biotechnol. 2010, 85, 1935–1946. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Heydt, M.; Stoll, D.; Schütz, P.; Geisen, R. Oxidative stress induces the biosynthesis of citrinin by Penicillium verrucosum at the expense of ochratoxin. Int. J. Food Microbiol. 2015, 192, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Peñalva, M.A.; Joan, T.; Elaine, B.; Arst, H.N. Ambient pH gene regulation in fungi: Making connections. Trends Microbiol. 2008, 16, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Tilburn, J.; Sarkar, S.; Widdick, D.A.; Espeso, E.A.; Orejas, M.; Mungroo, J.; Peñalva, M.A.; Arst, H.N. The AspergillusPacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 1995, 14, 779–790. [Google Scholar] [PubMed]
- Espeso, E.A.; Tilburn, J.; Sánchez-Pulido, L.; Brown, C.V.; Valencia, A.; Arst, H.N.J.; Peñalva, M.A. Specific DNA recognition by the Aspergillus nidulans three zinc finger transcription factor PacC. J. Mol. Biol. 1997, 274, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Keller, N.P.; Nesbitt, C.; Sarr, B.; Phillips, T.D.; Burow, G.B. pH regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathology 1997, 87, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Kapetanakou, A.E.; Panagou, E.Z.; Gialitaki, M.; Drosinos, E.H.; Skandamis, P.N. Evaluating the combined effect of water activity, pH and temperature on ochratoxin a production by Aspergillus ochraceus and Aspergillus carbonarius οn culture medium and corinth raisins. Food Control 2009, 20, 725–732. [Google Scholar] [CrossRef]
- Esteban, A.; Abarca, M.L.; Bragulat, M.R.; Cabañes, F.J. Effect of pH on ochratoxin A production by Aspergillus niger aggregate species. Food Addit. Contam. 2006, 23, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Passamani, F.R.; Hernandes, T.; Lopes, N.A.; Bastos, S.C.; Santiago, W.D.; Cardoso, M.D.G.; Batista, L.R. Effect of temperature, water activity, and pH on growth and production of ochratoxin A by Aspergillus niger and Aspergillus carbonarius from brazilian grapes. J. Food Prot. 2014, 77, 1947–1952. [Google Scholar] [CrossRef] [PubMed]
- Arst, H.N.J.; Peñalva, M.A. pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends Genet. 2003, 19, 224–231. [Google Scholar] [CrossRef]
- Peñalva, M.A.; Arst, H.N.J. Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu. Rev. Microbiol. 2004, 58, 425–451. [Google Scholar] [CrossRef] [PubMed]
- Peñalva, M.A.; Arst, H.N., Jr. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol. Mol. Biol. Rev. 2002, 66, 426–446. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.; Mateo, E.M.; Valle-Algarra, F.M.; Mateo, F.; Mateo, R.; Jimenez, M. Influence of nitrogen and carbon sources on the production of ochratoxin A by ochratoxigenic strains of Aspergillus spp. isolated from grapes. Int. J. Food Microbiol. 2008, 122, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Medina, Á.; González, G.; Sáez, J.M.; Mateo, R.; Jiménez, M. Bee pollen, a substrate that stimulates ochratoxin A production by Aspergillus ochraceus wilh. Syst. Appl. Microbiol. 2004, 27, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.; Abd-Allah, E.F.; Al-Obeed, R.S.; Alqarawi, A.A.; Alwathnani, H.A. Effect of carbon, nitrogen sources and water activity on growth and ochratoxin production of Aspergillus carbonarius (bainier) thom. Jundishapur J. Microbiol. 2015, 8, e17569. [Google Scholar] [CrossRef] [PubMed]
- Nehlin, J.O.; Ronne, H. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO J. 1990, 9, 2891–2898. [Google Scholar] [PubMed]
- Cubero, B.; Scazzocchio, C. Two different, adjacent and divergent zinc finger binding sites are necessary for CreA-meidiated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J. 1994, 13, 407–415. [Google Scholar] [PubMed]
- Wilfried, J.; Martijn, R. Mutation of Cre1 in Fusarium oxysporum reverts the pathogenicity defects of the FRP1 deletion mutant. Mol. Microbiol. 2009, 74, 1100–1113. [Google Scholar]
- Tudzynski, B.; Liu, S.; Kelly, J.M. Carbon catabolite repression in plant pathogenic fungi: Isolation and characterization of the Gibberella fujikuroi and Botrytis cinereacreAgenes. FEMS Microbiol. Lett. 2000, 184, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, T.; Margeot, A.; Linke, R.; Atanasova, L.; Fekete, E.; Sándor, E.; Hartl, L.; Karaffa, L.; Druzhinina, I.S.; Seiboth, B. The Cre1 carbon catabolite repressor of the fungus Trichoderma reesei: A master regulator of carbon assimilation. BMC Genom. 2011, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sophianopoulou, V.; Suárez, T.; Diallinas, G.; Scazzocchio, C. Operator derepressed mutations in the proline utilisation gene cluster of Aspergillus nidulans. Mol. Gen. Genet. MGG 1993, 236, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.A.; Arst, H.N. Mutational analysis of AreA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the “streetwise” gata family of transcription factors. Microbiol. Mol. Biol. Rev. 1998, 62, 586–596. [Google Scholar] [PubMed]
- Wong, K.H.; Hynes, M.J.; Todd, R.B.; Davis, M.A. Transcriptional control of NmrA by the bZIP transcription factor MeaB reveals a new level of nitrogen regulation in Aspergillus nidulans. Mol. Microbiol. 2007, 66, 534–551. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rico, R.O.; Mauriz, F.E. The heterotrimeric Gα protein Pga1 regulates biosynthesis of penicillin, chrysogenin and roquefortine in Penicillium chrysogenum. Microbiology 2008, 154, 3567–3578. [Google Scholar] [CrossRef] [PubMed]
- Shwab, E.K.; Keller, N.P. Regulation of secondary metabolite production in filamentous ascomycetes. Mycol. Res. 2008, 112, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Moye-Rowley, W.S. Regulation of the transcriptional response to oxidative stress in fungi: Similarities and differences. Eukaryot. Cell 2003, 2, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Heydt, M.; Graf, E.; Batzler, J.; Geisen, R. The application of transcriptomics to understand the ecological reasons of ochratoxin a biosynthesis by penicillium nordicum on sodium chloride rich dry cured foods. Trends Food Sci. Technol. 2011, 22, S39–S48. [Google Scholar] [CrossRef]
- Larsen, T.O.; Svendsen, A.; Smedsgaard, J. Biochemical characterization of ochratoxin A-producing strains of the genus Penicillium. Appl. Environ. Microbiol. 2001, 67, 3630–3635. [Google Scholar] [CrossRef] [PubMed]
- Sonjak, S.; Ličen, M.; Frisvad, J.C.; Gunde-Cimerman, N. Salting of dry-cured meat—A potential cause of contamination with the ochratoxin A-producing species Penicillium nordicum. Food Microbiol. 2011, 28, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Stoll, D.; Schmidt-Heydt, M.; Geisen, R. Differences in the regulation of ochratoxin A by the HOG pathway in Penicillium and Aspergillus in response to high osmolar environments. Toxins 2013, 5, 1282–1298. [Google Scholar] [CrossRef] [PubMed]
- Markus, S.H.; Stoll, D.A.; Jennifer, M.; Rolf, G. Intraspecific variability of HOG1 phosphorylation in Penicillium verrucosum reflects different adaptation levels to salt rich habitats. Int. J. Food Microbiol. 2013, 165, 246–250. [Google Scholar]
- Petzinger, E.; Ziegler, K. Ochratoxin A from a toxicological perspective. J. Vet. Pharmacol. Ther. 2000, 23, 91–98. [Google Scholar] [CrossRef] [PubMed]
Number | Organism/Name | SubGroup | Section | Location | Source |
---|---|---|---|---|---|
1 | Aspergillus affinis | Ascomycetes | Circumdati | Italy | decomposingleaves, fluvial mycobiota |
2 | Aspergillus albertensis | Ascomycetes | Flavi | Canada | ear swab |
3 | Aspergillus alliaceus | Ascomycetes | Flavi | USA, Australia, Indonesia | macrobasis albida, great barrier reef, kemiri nut, soil |
4 | Aspergillus welwitschiae | Ascomycetes | Nigri | Japan, Portugal, Spain, Italy, Greece | koji, Grapes |
5 | Aspergillus carbonarius | Ascomycetes | Nigri | China, Italy, Australia, USA | grape, beer, coffee |
6 | Aspergillus cretensis | Ascomycetes | Circumdati | Greece, Israel | citrus, soil |
7 | Aspergillus flocculosus | Ascomycetes | Circumdati | Slovenia, India, Netherlands, Greece | saltern |
8 | Aspergillus lacticoffeatus | Ascomycetes | Nigri | Venezuela, Indonesia | coffee bean, soil |
9 | Aspergillus niger | Ascomycetes | Nigri | China, Italy, Spain, Germany, USA | grape, beer, cereal, coffee, triticum aestivum, zeamays |
10 | Aspergillus ochraceus | Ascomycetes | Circumdati | China, Italy, Portugal, Denmark, UK, Japan, France | cereal, coffee, beverage, grape, zeamays |
11 | Aspergillus pseudoelegans | Ascomycetes | Circumdati | Costa Rica | soil |
12 | Aspergillus roseoglobulosus | Ascomycetes | Circumdati | Bahamas | decaying leave of rhizophora mangle |
13 | Aspergillus sclerotioniger | Ascomycetes | Nigri | India | coffee bean, green coffee |
14 | Aspergillus sclerotiorum | Ascomycetes | Circumdati | USA, Thailand, China | malus sylvestris, fruit, soil |
15 | Aspergillus steynii | Ascomycetes | Circumdati | India, China, Australia, Panama, Argentina, Sri Lanka | green coffee bean, rice, arecha catechu, soybean |
16 | Aspergillus sulphureus | Ascomycetes | Circumdati | India, China | alkaline soil |
17 | Aspergillus westerdijkiae | Ascomycetes | Circumdati | South Africa, China, Slovenia, India | rice, beverage, green coffee bean, saltern, sorghum, corn, chili, anise, grapes |
18 | Neopetromyces muricatus | Ascomycetes | - | Australia, Philippines, Indonesia | peanut, soil |
20 | Penicillium nordicum | Ascomycetes | - | Germany, Italy | cheese, fermented meats |
21 | Penicillium verrucosum | Ascomycetes | - | Germany, Australia, Italy, UK, Sweden | cereal, grape, triticum durum, rye, barely |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, L.; Liu, F.; Wang, Q.; Selvaraj, J.N.; Xing, F.; Zhao, Y.; Liu, Y. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins 2016, 8, 83. https://doi.org/10.3390/toxins8030083
Wang Y, Wang L, Liu F, Wang Q, Selvaraj JN, Xing F, Zhao Y, Liu Y. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins. 2016; 8(3):83. https://doi.org/10.3390/toxins8030083
Chicago/Turabian StyleWang, Yan, Liuqing Wang, Fei Liu, Qi Wang, Jonathan Nimal Selvaraj, Fuguo Xing, Yueju Zhao, and Yang Liu. 2016. "Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms" Toxins 8, no. 3: 83. https://doi.org/10.3390/toxins8030083
APA StyleWang, Y., Wang, L., Liu, F., Wang, Q., Selvaraj, J. N., Xing, F., Zhao, Y., & Liu, Y. (2016). Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins, 8(3), 83. https://doi.org/10.3390/toxins8030083