Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines
Abstract
:1. Introduction
2. Alpha Toxin (CPA)
Recombinant CPA Production Strategies and Animal Model Immunizations
3. Beta Toxin (CPB)
Recombinant CPB Production Strategies and Animal Model Immunizations
4. Epsilon Toxin (ETX)
Recombinant ETX Production Strategies and Animal Model Immunizations
5. Immunogenicity rCPA, rCPB, and rETX in Farm Animals
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McClane, B.A.; Uzal, F.A.; Miyakawa, M.; Lierly, D.; Wilkins, T.D. The enterotoxic clostridia. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenburg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 698–752. [Google Scholar]
- Hatheway, C.L. Toxigenic clostridia. Clin. Microbiol. Rev. 1990, 3, 66–98. [Google Scholar] [CrossRef] [PubMed]
- McClane, B.A.; Robertson, S.; Li, J. Clostridium perfringens. In Food Microbiology: Fundamentals and Frontiers; Doyle, M.P., Buchanan, R.L., Eds.; ASM Press: Washington, DC, USA, 2013; pp. 465–489. [Google Scholar]
- Revitt-Mills, S.; Rood, J.; Adams, V. Clostridium perfringens extracellular toxins and enzymes: 20 and counting. Microbiol. Aust. 2015, 36, 114–117. [Google Scholar] [CrossRef]
- Nillo, L. Clostridium perfringens in Animal Disease: A Review of Current Knowledge. Can. Vet. J. 1980, 21, 141–148. [Google Scholar]
- Uzal, F.A.; Vidal, J.E.; McClane, B.A.; Gurjar, A.A. Clostridium perfringens toxins involved in mammalian veterinary diseases. Changes 2010, 29, 997–1003. [Google Scholar] [CrossRef]
- Songer, J.G. Clostridial enteric diseases of domestic animals. Clin. Microbiol. Rev. 1996, 9, 216–234. [Google Scholar] [PubMed]
- Titball, R.W.; Rood, J.I. Clostridium perfringens: Wound infections. In Molecular Medical Microbiology; Academic Press: London, UK, 2002; pp. 1875–1903. [Google Scholar]
- Manteca, C.; Daube, G.; Jauniaux, T.; Linden, A.; Pirson, V.; Detilleux, J.; Ginter, A.; Coppe, P.; Kaeckenbeeck, A.; Mainil, J. A role for the Clostridium perfringens β2 toxin in bovine enterotoxaemia? Vet. Microbiol. 2002, 86, 191–202. [Google Scholar] [CrossRef]
- Dutra, I. Clostridioses—Doenças Que Mais Matam Bovinos. Available online: http://www.beefpoint.combr/radares-tecnicos/sanidade/clostridioses-doencas-que-mais-matam-bovinos-5068/ (accessed on 15 October 2016).
- Li, J.; Adams, V.; Bannam, T.L.; Miyamoto, K.; Garcia, J.P.; Uzal, F.A.; Rood, J.I.; McClane, B.A. Toxin plasmids of Clostridium perfringens. Microbiol. Mol. Biol. Rev. 2013, 77, 208–233. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, M.; Mainil, J.G.; Linden, A. Cattle enterotoxaemia and Clostridium perfringens: Description, diagnosis and prophylaxis. Vet. Rec. 2010, 167, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Massey, P.R.; Sakran, J.V.; Mills, A.M.; Sarani, B.; Aufhauser, D.D., Jr.; Sims, C.A.; Pascual, J.L.; Kelz, R.R.; Holena, D.N. Association for Academic Surgery Hyperbaric oxygen therapy in necrotizing soft tissue infections. J. Surg. Res. 2012, 177, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.P.; Beingesser, J.; Bohorov, O.; Bohorova, N.; Goodman, C.; Kim, D.; Pauly, M.; Velasco, J.; Whaley, K.; Zeitlin, L.; et al. Prevention and treatment of Clostridium perfringens epsilon toxin intoxication in mice with a neutralizing monoclonal antibody (c4D7) produced in Nicotiana benthamiana. Toxicon 2014, 88, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.H.H.; Chang, H.C.C.; Pasupathy, S.; Khin, L.W.W.; Tan, J.L.L.; Low, C.O.O. Necrotizing fasciitis: Clinical presentation, microbiology, and determinants of mortality. J. Bone Jt. Surg. Am. 2003, 85A, 1454–1460. [Google Scholar] [CrossRef]
- Lobato, F.C.F.; Moro, E.; Umehara, O. Avaliação da resposta de antitoxinas beta e épsilon de Clostridium perfringens induzidas em bovinos e coelhos por seis vacinas camerciais no Brasil. Arq. Bras. Med. Vet. Zootec. 2000, 52, 313–318. [Google Scholar] [CrossRef]
- Veschi, J.; Dutra, I.; Aalves, M.; Perri, S.; Zafalon, L.; Fernandez-Miyakawa, M. Sorological evaluation of polyvalent commercial vaccines against enterotoxemia in goats. ARS Vet. 2012, 28, 222–226. [Google Scholar]
- Bhatia, B.; Solanki, A.K.; Kaushik, H.; Dixit, A.; Garg, L.C. B-cell epitope of beta toxin of Clostridium perfringens genetically conjugated to a carrier protein: Expression, purification and characterization of the chimeric protein. Protein Expr. Purif. 2014, 102, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.P.; Smith, L.A. Development of vaccines for prevention of botulism. Biochimie 2000, 82, 955–966. [Google Scholar] [CrossRef]
- Bokori-Brown, M.; Hall, C.; Vance, C.; Costa, S.F.; Savva, C.G.; Naylor, C.E.; Cole, A.R.; Basak, A.K.; Moss, D.S.; Titball, R.W. Clostridium perfringens epsilon toxin mutant Y30A-Y196A as a recombinant vaccine candidate against enterotoxemia. Vaccine 2014, 32, 2682–2687. [Google Scholar] [CrossRef] [PubMed]
- Thaysen-Andersen, M.; Jørgensen, S.B.; Wilhelmsen, E.S.; Petersen, J.W.; Højrup, P. Investigation of the detoxification mechanism of formaldehyde-treated tetanus toxin. Vaccine 2007, 25, 2213–2227. [Google Scholar] [CrossRef] [PubMed]
- Lobato, F.C.F.; Lima, C.G.R.D.; Assis, R.A.; Pires, P.S.; Silva, R.O.S.; Salvarani, F.M.; Carmo, A.O.; Contigli, C.; Kalapothakis, E. Potency against enterotoxemia of a recombinant Clostridium perfringens type D epsilon toxoid in ruminants. Vaccine 2010, 28, 6125–6127. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, M.; Porto, T.; Porto, A.; Brandi, I.; Lima Filho, J.; Pessoa Junior, A. Large scale purification of Clostridium perfringens toxins: A review. Braz. J. Pharm. Sci. 2004, 40, 151–164. [Google Scholar] [CrossRef]
- Larentis, A.; Nicolau, J.F.M.Q.; Esteves, G.D.; Vareschini, D.; de Almeida, F.V.; dos Reis, M.; Galler, R.; Medeiros, M. Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of a leptospiral protein in E. coli using shaking flasks and microbioreactor. BMC Res. Notes 2014, 7. [Google Scholar] [CrossRef] [PubMed]
- Moreira, G.; Cunha, C.; Salvarani, F.; Gonçalves, L.; Pires, P.; Conceição, F.; Lobato, F. Production of recombinant botulism antigens: A review of expression systems. Anaerobe 2014, 28, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Deng, G.; Wang, J.; Zhou, J.; Liu, X.; Xie, Q.; Wang, Y. Potential protective immunogenicity of recombinant clostridium perfringens α-β2-β1 fusion toxin in mice, sows and cows. Vaccine 2011, 29, 5459–5466. [Google Scholar] [CrossRef] [PubMed]
- Moreira, C., Jr.; Cunha, C.E.P.; Moreira, G.S.M.G.; Mendonça, M.; Salvarani, F.M.; Moreira, A.N.; Conceição, F.R. Protective potential of recombinant non-purified botulinum neurotoxin serotypes C and D. Anaerobe 2016, 40, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Titball, R.W.; Naylor, C.E.; Basak, A.K. The Clostridium perfringens alpha-toxin. Anaerobe 1999, 5, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Flores-Díaz, M.; Alape-Girón, A. Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene. Toxicon 2003, 42, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, J.; Nagahama, M.; Oda, M. Clostridium perfringens alpha-toxin: Characterization and mode of action. J. Biochem. 2004, 136, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Oda, M.; Terao, Y.; Sakurai, J.; Nagahama, M. Membrane-binding mechanism of Clostridium perfringens alpha-toxin. Toxins 2015, 7, 5268–5275. [Google Scholar] [CrossRef] [PubMed]
- Nagahama, M.; Okagawa, Y.; Nakayama, T.; Nishioka, E.; Sakurai, J. Site-directed mutagenesis of histidine residues in Clostridium perfringens alpha-toxin. J. Bacteriol. 1995, 177, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Nagahama, M.; Nakayama, T.; Michiue, K.; Sakurai, J. Site-specific mutagenesis of Clostridium perfringens alpha-toxin: Replacement of Asp-56, Asp-130, or Glu-152 causes loss of enzymatic and hemolytic activities. Infect. Immun. 1997, 65, 3489–3492. [Google Scholar] [PubMed]
- Takehara, M.; Takagishi, T.; Seike, S.; Ohtani, K.; Kobayashi, K.; Miyamoto, K.; Shimizu, T.; Nagahama, M. Clostridium perfringens α-toxin impairs innate immunity via inhibition of neutrophil differentiation. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Titball, R.W.; Hunter, S.E.; Martin, K.L.; Morris, B.C.; Shuttleworth, A.D.; Rubidge, T.; Anderson, D.W.; Kelly, D.C. Molecular cloning and nucleotide sequence of the alpha-toxin (phospholipase C) of Clostridium perfringens. Infect. Immun. 1989, 57, 367–376. [Google Scholar] [PubMed]
- Leslie, D.; Fairweather, N.; Pickard, D.; Dougan, G.; Kehoe, M. Phospholipase C and haemolytic activities of Clostridium perfringens alpha-toxin cloned in Escherichia coli: Sequence and homology with a Bacillus cereus phospholipase C. Mol. Microbiol. 1989, 3, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Okabe, A.; Tohru, S.; Hayashi, H. Cloning and sequencing of a phospholipase C gene of Clostrdium perfringens. Biochem. Biophys. Res. Commun. 1989, 160, 33–39. [Google Scholar] [CrossRef]
- Saint-Joanis, B.; Garnier, T.; Cole, S. Gene cloning shows the alpha-toxin of Clostridium perfringens to contain both sphingomyelinase and lecithinase activities. Mol. Gen. Genet. 1989, 219, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Tso, J.; Siebel, C. Cloning and expression of the phospholipase C gene from Clostridium perfringens and Clostridium bifermentans. Infect. Immun. 1989, 57, 468–476. [Google Scholar] [PubMed]
- Hoang, T.H.; Hong, H.A.; Clark, G.C.; Titball, R.W.; Cutting, S.M. Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infect. Immun. 2008, 76, 5257–5265. [Google Scholar] [CrossRef] [PubMed]
- Uppalapati, S.R.; Kingston, J.J.; Murali, H.S.; Batra, H.V. Heterologous protection against alpha toxins of Clostridium perfringens and Staphylococcus aureus induced by binding domain recombinant chimeric protein. Vaccine 2014, 32, 3075–3081. [Google Scholar] [CrossRef] [PubMed]
- Uppalapati, S.R.; Kingston, J.J.; Murali, H.S.; Batra, H.V. Generation and characterization of an inter-generic bivalent alpha domain fusion protein αCS from Clostridium perfringens and Staphylococcus aureus for concurrent diagnosis and therapeutic applications. J. Appl. Microbiol. 2012, 113, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Shreya, D.; Uppalapati, S.R.; Kingston, J.J.; Sripathy, M.H.; Batra, H.V. Immunization with recombinant bivalent chimera r-Cpae confers protection against alpha toxin and enterotoxin of Clostridium perfringens type A in murine model. Mol. Immunol. 2015, 65, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.D.; Titball, R.W. A genetically engineered vaccine against the alpha-toxin of Clostridium perfringens protects mice against experimental gas gangrene. Vaccine 1993, 11, 1253–1258. [Google Scholar] [CrossRef]
- Schoepe, H.; Pache, C.; Neubauer, A.; Potschka, H.; Schlapp, T.; Wieler, L.H.; Baljer, G. Naturally occurring Clostridium perfringens nontoxic alpha-toxin variant as a potential vaccine candidate against alpha-toxin-associated diseases. Infect. Immun. 2001, 69, 7194–7196. [Google Scholar] [CrossRef] [PubMed]
- Neeson, B.N.; Clark, G.C.; Atkins, H.S.; Lingard, B.; Titball, R.W. Analysis of protection afforded by a Clostridium perfringens α-toxoid against heterologous clostridial phospholipases C. Microb. Pathog. 2007, 43, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Ginter, A.; Williamson, E.D.; Dessy, F.; Coppe, P.; Bullifent, H.; Howells, A.; Titball, R.W. Molecular variation between the alpha-toxins from the type strain (NCTC 8237) and clinical isolates of Clostridium perfringens associated with disease in man and animals. Microbiology 1996. [Google Scholar] [CrossRef] [PubMed]
- Nagahama, M.; Oda, M.; Kobayashi, K.; Ochi, S.; Takagishi, T.; Shibutani, M.; Sakurai, J. A recombinant carboxy-terminal domain of alpha-toxin protects mice against Clostridium perfringens. Microbiol. Immunol. 2013, 57, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Guillouard, I.; Garnier, T.; Cole, S.T. Use of site-directed mutagenesis to probe structure-function relationships of alpha-toxin from Clostridium perfringens. Infect. Immun. 1996, 64, 2440–2444. [Google Scholar] [PubMed]
- Guillouard, I.; Alzari, P.M.; Saliou, B.; Cole, S.T. The carboxy-terminal C2-like domain of the alpha-toxin from Clostridium perfringens mediates calcium-dependent membrane recognition. Mol. Microbiol. 1997, 26, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Alape-Girón, A.; Flores-Díaz, M.; Guillouard, I.; Naylor, C.; Titball, R.W.; Rucavado, A.; Lomonte, B.; Basak, A.; Gutiérrez, J.; Cole, S.; et al. Identification of residues critical for toxicity in Clostridium perfringens phospholipase C, the key toxin in gas gangrene. Eur. J. Biochem. 2000, 267, 5191–5197. [Google Scholar] [CrossRef] [PubMed]
- Schoepe, H.; Neubauer, A.; Schlapp, T.; Wieler, L.H.; Baljer, G. Immunization with an alphatoxin variant 121A/91-R212H protects mice against Clostridium perfringens alphatoxin. Anaerobe 2006, 12, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Goossens, E.; Verherstraeten, S.; Valgaeren, B.R.; Pardon, B.; Timbermont, L.; Schauvliege, S.; Rodrigo-Mocholí, D.; Haesebrouck, F.; Ducatelle, R.; Deprez, P.R.; et al. The C-terminal domain of Clostridium perfringens alpha toxin as a vaccine candidate against bovine necrohemorrhagic enteritis. Vet. Res. 2016, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titball, R.W. Gas gangrene: An open and closed case. Microbiology 2005, 151, 2821–2828. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.R.; Parreira, V.R.; Sharif, S.; Prescott, J.F. Immunization of broiler chickens against Clostridium perfringens-induced necrotic enteritis. Clin. Vaccine Immunol. 2007, 14, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Nuccitelli, A.; Cozzi, R.; Gourlay, L.J.; Donnarumma, D.; Necchi, F.; Norais, N.; Telford, J.L.; Rappuoli, R.; Bolognesi, M.; Maione, D.; et al. Structure-based approach to rationally design a chimeric protein for an effective vaccine against Group B Streptococcus infections. Proc. Natl. Acad. Sci. USA 2011, 108, 10278–10283. [Google Scholar] [CrossRef] [PubMed]
- Gurjar, A.; Li, J.; Mcclane, B.A. Characterization of toxin plasmids in Clostridium perfringens type C isolates. Infect. Immun. 2010, 78, 4860–4869. [Google Scholar] [CrossRef] [PubMed]
- Nagahama, M.; Ochi, S.; Oda, M.; Miyamoto, K.; Takehara, M.; Kobayashi, K. Recent insights into Clostridium perfringens beta-toxin. Toxins 2015, 7, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, J.; Nagahama, M. Clostridium perfringens beta-toxin: Characterization and action. Toxin Rev. 2006, 25, 89–108. [Google Scholar] [CrossRef]
- Hunter, S.E.C.; Brown, J.E.; Oyston, P.C.F.; Sakurai, J.; Titball, R.W. Molecular genetic analysis of beta-toxin of Clostridium perfringens reveals sequence homology with alpha-toxin, gamma-toxin, and leukocidin of Staphylococcus aureus. Infect. Immun. 1993, 61, 3958–3965. [Google Scholar] [PubMed]
- Gurtner, C.; Popescu, F.; Wyder, M.; Sutter, E.; Zeeh, F.; Frey, J.; von Schubert, C.; Posthaus, H. Rapid cytopathic effects of Clostridium perfringens beta-toxin on porcine endothelial cells. Infect. Immun. 2010, 78, 2966–2973. [Google Scholar] [CrossRef] [PubMed]
- Popescu, F.; Wyder, M.; Gurtner, C.; Frey, J.; Cooke, R.A.; Greenhill, A.R.; Posthaus, H. Susceptibility of primary human endothelial cells to C. perfringens beta-toxin suggesting similar pathogenesis in human and porcine necrotizing enteritis. Vet. Microbiol. 2011, 153, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Autheman, D.; Wyder, M.; Popoff, M.; D’Herde, K.; Christen, S.; Posthaus, H. Clostridium perfringens beta-toxin induces necrostatin-inhibitable, calpain-dependent necrosis in primary porcine endothelial cells. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roos, S.; Wyder, M.; Candi, A.; Regenscheit, N.; Nathues, C.; van Immerseel, F.; Posthaus, H. Binding Studies on isolated porcine small intestinal mucosa and in vitro toxicity studies reveal lack of effect of C. perfringens beta-toxin on the porcine intestinal epithelium. Toxins 2015, 7, 1235–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinthorsdottir, V.; Fridriksdottir, V.; Gunnarsson, E.; Andrésson, O.S. Site-directed mutagenesis of Clostridium perfringens beta-toxin: Expression of wild-type and mutant toxins in Bacillus subtilis. FEMS Microbiol. Lett. 1998, 158, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Steinthorsdottir, V.; Halldórsson, H.; Andrésson, O.S. Clostridium perfringens beta-toxin forms multimeric transmembrane pores in human endothelial cells. Microb. Pathog. 2000, 28, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Milach, A.; de los Santos, J.R.; Turnes, C.G.; Moreira, A.N.; de Assis, R.A.; Salvarani, F.M.; Lobato, F.C.F.; Conceição, F.R. Production and characterization of Clostridium perfringens recombinant β toxoid. Anaerobe 2012, 18, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Salvarani, F.M.; Conceição, F.R.; Cunha, C.E.P.; Moreira, G.M.S.G.; Pires, P.S.; Silva, R.O.S.; Alves, G.G.; Lobato, F.C.F. Vaccination with recombinant Clostridium perfringens toxoids α and β promotes elevated antepartum and passive humoral immunity in swine. Vaccine 2013, 31, 4152–4155. [Google Scholar] [CrossRef] [PubMed]
- Moreira, G.M.S.G.; Salvarani, F.M.; Cunha, C.E.P.; Mendonça, M.; Moreira, A.N.; Gonçalves, L.A.; Pires, P.S.; Lobato, F.C.F.; Conceição, F.R. Immunogenicity of a trivalent recombinant vaccine against Clostridium perfringens alpha, beta, and epsilon toxins in farm ruminants. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Shreya, D.; Majumder, S.; Kingston, J.J.; Batra, H.V. Generation and characterization of recombinant bivalent fusion protein r-Cpib for immunotherapy against Clostridium perfringens beta and iota toxemia. Mol. Immunol. 2016, 70, 140–148. [Google Scholar]
- Langroudi, R.P.; Shamsara, M.; Aghaiypour, K. Expression of Clostridium perfringens epsilon-beta fusion toxin gene in E. coli and its immunologic studies in mouse. Vaccine 2013, 31, 3295–3299. [Google Scholar] [CrossRef] [PubMed]
- Nagahama, M.; Hayashi, S.; Morimitsu, S.; Sakurai, J. Biological activities and pore formation of Clostridium perfringens beta toxin in HL 60 cells. J. Biol. Chem. 2003, 278, 36934–36941. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Zhang, Y.; Zhao, B. Cloning of alpha-beta fusion gene from Clostridium perfringens and its expression. World J. Gastroenterol. 2006, 12, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Bakhshi, F.; Langroudi, R.P.; Eimani, B.G. Enhanced expression of recombinant beta toxin of Clostridium perfringens type B using a commercially available Escherichia coli strain. Onderstepoort J. Vet. Res. 2011, 21, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Alves, G.G.; Ávila, R.A.M.; Chávez-Olórtegui, C.D.; Lobato, F.C.F. Clostridium perfringens epsilon toxin: The third most potent bacterial toxin known. Anaerobe 2014, 30, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Minami, J.; Katayama, S.; Matsushita, O.; Matsushita, C.; Okabe, A. Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N- and C-terminal peptides. Microbiol. Immunol. 1997, 41, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Miyata, S.; Matsushita, O.; Minami, J.; Katayama, S.; Shimamoto, S.; Okabe, A. Cleavage of a C-terminal peptide is essential for heptamerization of Clostridium perfringens ε-toxin in the synaptosomal membrane. J. Biol. Chem. 2001, 276, 13778–13783. [Google Scholar] [PubMed]
- Bokori-Brown, M.; Savva, C.G.; Costa, S.P.F.; Naylor, C.E.; Basak, A.K.; Titball, R.W. Molecular basis of toxicity of Clostridium perfringens epsilon toxin. FEBS J. 2011, 278, 4589–4601. [Google Scholar] [CrossRef] [PubMed]
- Freedman, J.C.; McClane, B.A.; Uzal, F.A. New insights into Clostridium perfringens epsilon toxin activation and action on the brain during enterotoxemia. Anaerobe 2016, 41, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Oyston, P.C.F.; Payne, D.W.; Havard, H.L.; Williamson, E.D.; Titball, R.W. Production of a non-toxic site-directed mutant of Clostridium perfringens epsilon-toxin which induces protective immunity in mice. Microbiology 1998. [Google Scholar] [CrossRef] [PubMed]
- Ivie, S.E.; McClain, M.S. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1. Biochemistry 2012, 51, 7588–7595. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Chang, J.; Wang, F.; Yu, L. Identification of tyrosine 71 as a critical residue for the cytotoxic activity of Clostridium perfringens epsilon toxin towards MDCK cells. J. Microbiol. 2015, 53, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Ivie, S.E.; Fennessey, C.M.; Sheng, J.; Rubin, D.H.; McClain, M.S. Gene-trap mutagenesis identifies mammalian genes contributing to intoxication by Clostridium perfringens ε-toxin. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Rumah, K.R.; Ma, Y.; Linden, J.R.; Oo, M.L.; Anrather, J.; Schaeren-Wiemers, N.; Alonso, M.A.; Fischetti, V.A.; McClain, M.S.; Vartanian, T. The myelin and lymphocyte protein MAL is required for binding and activity of Clostridium perfringens ε-toxin. PLoS Pathog. 2015, 20. [Google Scholar] [CrossRef] [PubMed]
- Knapp, O.; Maier, E.; Benz, R.; Geny, B.; Popoff, M.R. Identification of the channel-forming domain of Clostridium perfringens Epsilon-toxin (ETX). Biochim. Biophys. Acta 2009, 1788, 2584–2593. [Google Scholar] [CrossRef] [PubMed]
- Nestorovich, E.M.; Karginov, V.A.; Bezrukov, S.A. Polymer partitioning and ion selectivity suggest asymmetrical shape for the membrane pore formed by epsilon toxin. Biophys. J. 2010, 99, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.L.; Li, J.; Uzal, F.A.; McClane, B.A. Evidence for a prepore stage in the action of Clostridium perfringens epsilon toxin. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soler-Jover, A.; Dorca, J.; Popoff, M.R.; Gibert, M.; Saura, J.; Tusell, J.M.; Serratosa, J.; Blasi, J.; Martín-Satué, M. Distribution of Clostridium perfringens epsilon toxin in the brains of acutely intoxicated mice and its effect upon glial cells. Toxicon 2007, 50, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Gil, C.; Dorca-arévalo, J.; Blasi, J. Clostridium perfringens epsilon toxin binds to membrane lipids and its cytotoxic action depends on sulfatide. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, S.E.; Clarke, I.N.; Kelly, D.C.; Titball, R.W. Cloning and nucleotide sequencing of the Clostridium perfringens epsilon-toxin gene and its expression in Escherichia coli. Infect. Immun. 1992, 60, 102–110. [Google Scholar] [PubMed]
- Dorca-Arévalo, J.; Soler-Jover, A.; Gibert, M.; Popoff, M.R.; Martín-Satué, M.; Blasi, J. Binding of ε-toxin from Clostridium perfringens in the nervous system. Vet. Microbiol. 2008, 131, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Dorca-Arévalo, J.; Pauillac, S.; Díaz-Hidalgo, L.; Martín-Satué, M.; Popoff, M.R.; Blasi, J. Correlation between in vitro cytotoxicity and in vivo lethal activity in mice of epsilon toxin mutants from Clostridium perfringens. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorca-Arévalo, J.; Martín-Satué, M.; Blasi, J. Characterization of the high affinity binding of epsilon toxin from Clostridium perfringens to the renal system. Vet. Microbiol. 2012, 157, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Chandran, D.; Naidu, S.S.; Sugumar, P.; Rani, G.S.; Vijayan, S.P.; Mathur, D.; Garg, L.C.; Srinivasan, VA. Development of a recombinant epsilon toxoid vaccine against enterotoxemia and its use as a combination vaccine with live attenuated sheep pox virus against enterotoxemia and sheep pox. Clin. Vaccine Immunol. 2010, 17, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xin, W.; Gao, S.; Kang, L.; Wang, J. A low-toxic site-directed mutant of Clostridium perfringens ε-toxin as a potential candidate vaccine against enterotoxemia. Hum. Vaccine Immunother. 2013, 9, 2386–2392. [Google Scholar] [CrossRef]
- Yao, W.; Kang, J.; Kang, L.; Gao, S.; Yang, H.; Ji, B.; Li, P.; Liu, J.; Xin, W.; Wang, J. Immunization with a novel Clostridium perfringens epsilon toxin mutant rETXY196E-C confers strong protection in mice. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Alimolaei, M.; Golchin, M.; Daneshvar, H. Oral immunization of mice against Clostridium perfringens epsilon toxin with a Lactobacillus casei vector vaccine expressing epsilon toxoid. Infect. Genet. Evol. 2016, 40, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.M.; Reis, J.K.P.; Assis, R.A.; Horta, C.C.; Siqueira, F.F.; Facchin, S.; Alvarenga, E.R.; Castro, C.S.; Salvarani, F.M.; Silva, R.O.S.; et al. Molecular cloning and expression of epsilon toxin from Clostridium perfringens type D and tests of animal immunization. Genet. Mol. Res. 2010, 9, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.R.; Gibert, M.; Popoff, M.R.; Moss, D.S.; Titball, R.W.; Basak, A.K. Clostridium perfringens ε-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat. Struct. Mol. Biol. 2004, 11, 797–798. [Google Scholar] [CrossRef] [PubMed]
- Pelish, T.M.; McClain, M.S. Dominant-negative inhibitors of the Clostridium perfringens ε-toxin. J. Biol. Chem. 2009, 284, 29446–29453. [Google Scholar] [CrossRef] [PubMed]
- Maassen, C.B.M.; Laman, J.D.; Bak-glashouwer, M.J.H.; Tielen, F.J.; Holten-Neelen, J.C.P.A.; Hoogteijing, L.; Antonissen, C.; Leer, R.J.; Pouwels, P.H.; Boersma, W.J.A.; et al. Instruments for oral disease-intervention strategies: Recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis. Vaccine 1999, 17, 2117–2128. [Google Scholar] [CrossRef]
- Goswami, P.P.; Rupa, P.; Prihar, N.S.; Garg, L.C. Molecular cloning of Clostridium perfringens epsilon-toxin gene and its high level expression in E. coli. Biochem. Biophys. Res. Commun. 1996, 226, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Miyata, S.; Minami, J.; Tamai, E.; Matsushita, O.; Shimamoto, S.; Okabe, A. Clostridium perfringens ε-toxin forms a heptameric pore within the detergent-insoluble microdomains of Madin-Darby canine kidney cells and rat synaptosomes. J. Biol. Chem. 2002, 277, 39463–39468. [Google Scholar] [CrossRef] [PubMed]
- Zekarias, B.; Mo, H.; Curtiss, R. Recombinant attenuated Salmonella enterica serovar typhimurium expressing the carboxy-terminal domain of alpha toxin from Clostridium perfringens induces protective responses against necrotic enteritis in chickens. Clin. Vaccine Immunol. 2008, 15, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; De, Y.; Chang, J.; Wang, F.; Yu, L. Induction of potential protective immunity against enterotoxemia in calves by single or multiple recombinant Clostridium perfringens toxoids. Microbiol. Immunol. 2014, 58, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Gil, L.A.F.; Cunha, C.E.P.; Moreira, G.M.S.G.; Salvarani, F.M.; Assis, R.A.; Lobato, F.C.F.; Mendonça, M.; Dellagostin, O.A.; Conceição, F.R. Production and evaluation of a recombinant chimeric vaccine against Clostridium botulinum neurotoxin types C and D. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Conceição, F.R.; Moreira, A.N.; Dellagostin, O.A. A recombinant chimera composed of R1 repeat region of Mycoplasma hyopneumoniae P97 adhesin with Escherichia coli heat-labile enterotoxin B subunit elicits immune response in mice. Vaccine 2006, 24, 5734–5743. [Google Scholar] [CrossRef] [PubMed]
- Marchioro, S.B.; Fisch, A.; Gomes, C.K.; Galli, V.; Haesebrouck, F.; Maes, D.; Dellagostin, O.; Conceição, F.R. Local and systemic immune responses induced by a recombinant chimeric protein containing Mycoplasma hyopneumoniae antigens fused to the B subunit of Escherichia coli heat-labile enterotoxin LTB. Vet. Microbiol. 2014, 173, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Terpe, K. Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 2006, 72, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Khorasani, A.; Madadgar, O.; Soleimanjahi, H.; Keyvanfar, H.; Mahravani, H. Evaluation of the efficacy of a new oil-based adjuvant ISA 61 VG FMD vaccine as a potential vaccine for cattle. Iran. J. Vet. Res. Shiraz Univ. 2016, 17, 8–12. [Google Scholar]
- Aucouturier, J.; Dupuis, L.; Ganne, V. Adjuvants designed for veterinary and human vaccines. Vaccine 2001, 19, 2666–2672. [Google Scholar] [CrossRef]
- Cloete, M.; Dungu, B.; van Staden, L.; Ismail-Cassim, N.; Vosloo, W. Evaluation of different adjuvants for foot-and-mouth disease vaccine containing all the SAT serotypes. Onderstepoort J. Vet. Res. 2008, 75, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Sumithra, T.G.; Chaturvedi, V.K.; Siju, S.J.; Susan, C.; Rawat, M.; Rai, A.K.; Sunita, S.C. Enterotoxaemia in goats—A review of current knowledge. Small Rumin. Res. 2013, 114, 1–9. [Google Scholar] [CrossRef]
- Bernáth, S.; Fábián, K.; Kádár, I.; Szita, G.; Barna, T. Optimum time interval between the first vaccination and the booster of sheep for Clostridium perfringens type D different authors suggest very different time intervals for the revaccination of sheep, even when similarly adjuvanted vaccines are used again. Acta Vet. BRNO 2004, 73, 473–475. [Google Scholar] [CrossRef]
Toxinotype | Produced Toxins | Diseases (Affected Animals) |
---|---|---|
A | CPA | Gas gangrene (all production species) and enterotoxemia (ovine) |
CPA, CPE | Enteritis (equine, caprine, and swine) | |
CPA, NetB | Necroticenteritis (poultry) | |
CPA, NetF | Neonatal necroticenteritis (foal) | |
CPA, CPB2 | Necrotic enteritis (piglets), abomasitis (calves), enterocolitis (foal) | |
B | CPA, CPB, ETX | Necrotic enteritis and hemorrhagic enterotoxemia (bovine, ovine, and equine) |
C | CPA, CPB | Necrotic enteritis and enterotoxemia (bovine, ovine, caprine, swine, and newborn equine); necrotic enteritis (poultry) |
D | CPA, ETX | Enterotoxemia (ovine, bovine, and caprine) |
E | CPA, CPI | Hemorrhagic enteritis (lambs, and calves) |
Molecule | Doses | Via | No. of Doses | Interval (Days) | Adjuvant | Animal Model | Challenge | Survival (%) | References |
---|---|---|---|---|---|---|---|---|---|
rGST-CPA-C(247−370) | 10 µg | IP | 3 | 14 | FIA | Mouse | 1 µg of CPA; CAA | 100 (6/6) | [46] |
25 µg Cpb | 83.3 (5/6) | ||||||||
rCPA-N(1–249) A rCPA-C(247–370) B rGST-CPA-C(247–370) C | 0.36 pM | IP | 2–6 | 14 | FIA | Mouse | 50 × MLD CPA | 0 (0/6) A | [44] |
100 (6/6) C | |||||||||
100 (6/6) B,C | |||||||||
109 CFU (10 × LD100) | 0 (0/6) A | ||||||||
100 (6/6) B,C | |||||||||
66.6 (4/6) C | |||||||||
rGST-CPA-C | 0.36 pM | IP | 2–6 | 14 | FIA | Mouse | 15 µg CPA | 100 (6/6) | [47] |
rCPA-C(251–370) | 10 µg | IP | 2 | 14 | FCA/FIA | Mouse | 1 µg or 108 CFU | 100 (10/10) | [48] |
rCPA-C(281–370) | 100 (10/10) | ||||||||
rCPA-C(311–370) | 60 (6/10) | ||||||||
rGST-CPA-C(247–370) | 109 CFU (75 ng) | IP | 3 | 14 | None | Mouse | 12 × LD50 | NE | [40] |
B. subtilis | 5 × 1010 (3.6 µg) | PO | 21 | 100 (6/6) | |||||
(Cell surface display) | 2 × 109 (150 ng) | IN | 21 | 100 (6/6) | |||||
rCPAE (CPA-C(284–398) + CPE-C(197–312)) | 30 µg | SC | 4 | 7–14 | FCA/FIA | Mouse | 5 × LD50 CPA | 100 (12/12) | [43] |
5 × LD50 CPE | 75 (9/12) | ||||||||
rCS (CPA-C(284–398) + SAA(36–221)) | 50 µg | SC/IP | 3 | 14 | FCA/FIA | Mouse | 5 × LD100 CPA | 100 (6/6) | [41,42] |
5 × LD100 SAA | 100 (6/6) | ||||||||
5 × LD100 CPA + SAA | 83.3 (5/6) | ||||||||
rCPA | 100 µg | SC | 2 | 14 | Al(OH)3 | Mouse | 1 × LD100 A 2 × LD100 B 1 × LD100 C | 80 A, 70 B, 83 C | [26] |
rCPB2B1 | 90 A, 73 B, 93 C | ||||||||
rCPA + CPB2B1 | 100 A,B,C | ||||||||
rCPAB2B1 | 93 B, 100 A,C |
Molecule | Doses | Via | No. of Doses | Interval (Days) | Adjuvant | Animal Model | Challenge | Protection (IU/mL) or Survival (%) | References |
---|---|---|---|---|---|---|---|---|---|
rCPB | 100 µg | SC | 2 | 21 | Al(OH)3 | Rabbit | - | 10 IU/mL | [67] |
rETXCPB (ETX A + CPB B) | 0.5 mL | IP | 2 | 21 | None | Rabbit | - | 6 A and 10 B IU/mL | [71] |
rCPA | 200 µg | SC | 2 | 21 | Al(OH)3 | Rabbit | - | 9.6 IU/mL | [68] |
rCPB | 20.4 IU/mL | ||||||||
rCPIB | 30 µg | SC | 3 | 14 | FCA/FIA | Mouse | 5 × LD100 CPB | 83% (10/12) | [70] |
(CPI-C(466–665) + CPB-C(143–311)) | 5 × LD100 CPI | 91% (11/12) |
Molecule | Doses | Via | No. of Doses | Interval (Days) | Adjuvant | Animal Model | Challenge | Survival (%) or Protection (IU/mL) | References |
---|---|---|---|---|---|---|---|---|---|
rETX | 50; 100; 200; 300; 500 µg | SC | 2 | 21 | Al(OH)3 | Rabbit | - | 3; 5; 7; 7; 8; 7 IU/mL | [94] |
rETX | 50; 100; 200 µg | SC | 5 | 2–10 | FCA/FIA | Rabbit | - | 10; 30; 40 IU/mL | [98] |
rCPA, rCPB, rETX | 200 µg | SC | 2 | 21 | Al(OH)3 | Rabbit | - | 9.6; 24.4; 25 IU/mL | [69] |
rETXH106P | 0.27 nmol | IP | 3 | 14–21 | FIA | Mouse | 100 and 1000 × LD50 | 100% (30/30) | [80] |
rETXH106P | 10 µg | SC | 3 | 17–21 | Al(OH)3 | Mouse | 100 × LD50 | 100% (3/3) | [95] |
rETXF199E | |||||||||
rETXY196E-C | 5 µg A | SC IP | 3 | 14 | FCA | Mouse | 100 × LD50 a | 100% (5/5) Aab,Bab,Cab | [96] |
10 µg B | 500 × LD50 b | 20 Cb; 80 Aa; 100% Ba,Ca (1; 4; 5/5) | |||||||
15 µg C | 1000 × LD50 c | 80% (4/5) Ca | |||||||
Lactobacillus casei | 109 CFU | IG | 3 | 16–21 | None | Mouse | 200 × LD50 | 100% (10/10) | [97] |
(Cell surface display) | |||||||||
rETXH106P | |||||||||
rETXCPB (ETX A + CPB B) | 0.5 mL | IP | 2 | 21 | None | Rabbit | - | 6 A and 10 B IU/mL | [71] |
Antigens | Doses (via) | Boost Dose (Day) | Adjuvant | Animal | Method | Protection (UI/mL) | References | |||
---|---|---|---|---|---|---|---|---|---|---|
rETX | 50, 100, 200, 300, and 500 μg (SC) | 35 | Al(OH)3 | Sheep | SN | 2; 5; 7; 7; 9; 9 | [94] | |||
rETX | 200 μg (SC) | 14 | Al(OH)3 | Cattle | SN | 13.1 | [22] | |||
Sheep | 26 | |||||||||
Goat | 14.3 | |||||||||
rCPA rCPB2B1 rCPA+rCPB2B2 rCPAB2B1 | 200 μg (SC) | 14 | Al(OH)3 gel | Animal/specimen | SN | rCPA | rCPB2B1 | rCPAB2B1 | rCPA + rCB2B1 | [26] |
Cattle/Serum | 1 | 2 | 2 | 3 | ||||||
Cattle/Colostrum | 0 | 1 | 1 | 1 | ||||||
Swine/Serum | 4 | 6 | 6 | 6 | ||||||
Swine/Colostrum | 1 | 2 | 2 | 8 | ||||||
rCPA, rCPB, rETX | 300 μg (SC) | 14 | ISA 15A VG | Calves | ELISA | CPA | CPB | ETX | [105] | |
23.04 | 33.7 | 9.43 | ||||||||
rCPA, rCPB | 200 μg (SC) | 35 | Al(OH)3 | Swine | SN | 6 | 14.5 | - | [68] | |
Piglets | 4.2 | 10.9 | - | |||||||
rCPA, rCPB, rETX | 200 μg (SC) | 35 | Al(OH)3 | Cattle | SN | 5.19 | 13.71 | 12.74 | [69] | |
Sheep | 4.34 | 13.71 | 7.66 | |||||||
Goat | 4.7 | 13.71 | 8.91 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.R.A.; Moreira, G.M.S.G.; Cunha, C.E.P.d.; Mendonça, M.; Salvarani, F.M.; Moreira, Â.N.; Conceição, F.R. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines. Toxins 2016, 8, 340. https://doi.org/10.3390/toxins8110340
Ferreira MRA, Moreira GMSG, Cunha CEPd, Mendonça M, Salvarani FM, Moreira ÂN, Conceição FR. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines. Toxins. 2016; 8(11):340. https://doi.org/10.3390/toxins8110340
Chicago/Turabian StyleFerreira, Marcos Roberto A., Gustavo Marçal S. G. Moreira, Carlos Eduardo P. da Cunha, Marcelo Mendonça, Felipe M. Salvarani, Ângela N. Moreira, and Fabricio R. Conceição. 2016. "Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines" Toxins 8, no. 11: 340. https://doi.org/10.3390/toxins8110340