Evaluation of the Lethal Potency of Scorpion and Snake Venoms and Comparison between Intraperitoneal and Intravenous Injection Routes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Lethal Potency of Scorpion Venoms
LD50 | |||
---|---|---|---|
Am Venom | Bo Venom | Aah Venom | |
IV (µg/mouse) | 4.7 (4.1–5.4) | 15.2 (14.8–15.6) | 5.2 (4.7–5.7) |
IV (µg/kg) | 235 (205–270) | 775 (740–780) | 260 (235–285) |
IP (µg/mouse) | 5.8 (5.3–6.4) | 17.1 (16.7–17.5) | 6.7 (6.4–7.1) |
IP (µg/kg) | 290 (265–320) | 855 (835–875) | 335 (320–355) |
IP/IV ratio | 1.2 | 1.1 | 1.3 |
2.2. Lethal Potency of Representative Snake Venoms
LD50 | ||||
---|---|---|---|---|
Cc Venom | Ml Venom | Ba Venom | Nh Venom | |
IV (µg/mouse) | 4.9 (4.2–5.7) | 8.03 (7.4–8.5) | 5.7 (5.1–6.4) | 3.3 (2.5–3.8) |
IV (µg/kg) | 245 (210–285) | 402 (370–425) | 285 (255–320) | 165 (125–190) |
IP (µg/mouse) | 14.7 (12.9–15.2) | 24.1 (23.7–24.6) | 17.4 (17.1–17.9) | 4.1 (3.8–4.5) |
IP (µg/kg) | 735 (645–760) | 1205 (1185–1230) | 870 (855–895) | 205 (190–225) |
IP/IV ratio | 3.0 | 3.0 | 3.1 | 1.2 |
2.3. Concluding Remarks
3. Experimental Section
3.1. Snake Venoms
3.2. Scorpion Venoms
3.3. Measurement of Protein Concentration
3.4. Determination of the Median Lethal (LD50) Dose
3.5. Ethics Committee Approval
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bolaños, R. Toxicity of Costa Rican snake venoms for the white mouse. Am. J. Trop. Med. Hyg. 1972, 21, 360–363. [Google Scholar]
- Krifi, M.N.; Marrakchi, N.; El Ayeb, M.; Dellagi, K. Effect of Some Variables on the in vivo Determination of Scorpion and Viper Venom Toxicities. Biologicals 1998, 26, 277–288. [Google Scholar] [CrossRef]
- Oukkache, N.; Rosso, J.P.; Alami, M.; Ghalim, N.; Saïle, R.; Hassar, M.; Bougis, P.E.; Martin-Eauclaire, M.F. New analysis of the toxic compounds from the Androctonus. mauretanicus mauretanicus scorpion venom. Toxicon 2007, 51, 252–288. [Google Scholar]
- World Health Organization (WHO). World Health Organization: Progress in the Characterization of Venoms and Standardization of Antivenoms; WHO: Geneva, Switzerland, 1981. [Google Scholar]
- Oukkache, N.; Lalaoui, M.; Ghalim, N. General characterization of venom from the Moroccan snakes Macrovipera mauretanica and Cerastes cerastes. J. Venom. Anim. Toxins Trop. Dis. 2012, 18, 411–420. [Google Scholar] [CrossRef]
- Chippaux, J.P.; Goyffon, M. Venoms, antivenoms and immunotherapy. Toxicon 1998, 36, 823–846. [Google Scholar] [CrossRef]
- Segura, A.; Herrera, M.; Villalta, M.; Vargas, M.; Uscanga-Reynell, A.; de León-Rosales, S.P.; Jiménez-Corona, M.E.; Reta-Mares, J.F.; Gutiérrez, J.M.; León, G. Venom of Bothrops asper from Mexico and Costa Rica: Intraspecific variation and cross-neutralization by antivenoms. Toxicon 2012, 59, 158–162. [Google Scholar] [CrossRef]
- Charman, S.A.; Segrave, A.M.; Edwards, G.A.; Porter, C.J. Systematic availability and lymphatic transport of human growth hormone administered by subcutaneous injection. J. Pharm. Sci. 2000, 89, 168–177. [Google Scholar] [CrossRef]
- Charman, S.A.; McLennan, D.N.; Edwards, G.A.; Porter, C.J. Lymphatic absorption is a significant contributor to the subcutaneous bioavailability of insulin in a sheep model. Pharm. Res. 2001, 18, 1620–1626. [Google Scholar] [CrossRef]
- Chippaux, J.P.; Rakotonirina, V.S.; Rakotonirina, A.; Dzikouk, G. Substances médicamenteuses ou végétales antagonistes du venin ou potentialisant le sérum antivenimeux. Bull. Soc. Pathol. Exot. 1997, 90, 282–285. [Google Scholar]
- Revelo, M.P.; Bambirra, E.A.; Ferreira, A.P.; Ribeiro, J.C.; Olbrtegufegui Tomon, C.C. Body distribution of Tityus. Serrulatus. scorpion venom in mice and effects of scorpion antivenom. Toxicon 1996, 34, 119–125. [Google Scholar]
- Solano, G.; Segura, A.; Herrera, M.; Gómez, A.; Villalta, M.V.; Gutiérrez, J.M.; León, G. Study of the design and analytical properties of the lethality neutralization assay used to estimate antivenom potency against Bothrops asper snake venom. Biologicals 2010, 38, 577–585. [Google Scholar] [CrossRef]
- Trevors, J.T. A basic program for estimating LD50 values using the IBM-PC. Bull. Environ. Contam. Toxicol. 1986, 37, 18–26. [Google Scholar]
- Dzikouk, G.D.; Etoundi Ngoa, L.S.; Thonnon, J. (Comparative titration of three anti-venoms used against African subsaharian snakes). Bull. Soc. Pathol. Exot. 2002, 95, 144–147. [Google Scholar]
- World Health Organization. Guidelines for the production, control and regulation of snake antivenom immunoglobulins. Available online: http://www.who.int/bloodproducts/snake_antivenoms/snakeantivenomguide/en/ (accessed on 17 October 2008).
- AGAH. Working Group Pharmacokinetics: Collection of Terms, Symbols, Equations, and Explanations of Common Pharmacokinetic and Pharmacodynamic Parameters and Some Statistical Functions; AGAH Publisher: Kaarst, Germany, 2004; pp. 3–5. [Google Scholar]
- Gutiérrez, J.M. Clinical toxicology of snakebite in Central America. In Handbook of Clinical Toxicology of Animal Venoms and Poisons; CRC Press: Boca Raton, FL, USA, 1995; pp. 645–665. [Google Scholar]
- Kitchens, C.S.; van Mierop, L.H.S. Envenomation by the eastern coral snake Micrurus fulvius fulvius. JAMA 1987, 258, 1615–1618. [Google Scholar] [CrossRef]
- Kota, J.; Machavaram, K.K.; McLennan, D.N.; Edwards, G.A.; Porter, C.J.; Charman, S.A. Lymphatic absorption of subcutaneously administered proteins: Influence of different injection sites on the absorption of dabepoetin alfa using a sheep model. DMD 2007, 35, 2211–2217. [Google Scholar] [CrossRef]
- McLennan, D.N.; Porter, C.J.H.; Edwards, G.A.; Brumm, M.; Martin, S.W.; Charman, S.A. Pharmacokinetic model to describe the lymphatic absorption of r-methu-leptin after subcutaneous injection to sheep. Pharm. Res. 2003, 20, 1156–1162. [Google Scholar] [CrossRef]
- Paniagua, D.; Jiménez, L.; Romero, C.; Vergara, I.; Calderón, A.; Benard, M.; Bernas, M.J.; Rilo, H.; de Roodt, A.; D’Suze, G.; et al. Lymphatic route of transport and pharmacokinetics of Micrurus. Fulvius. (Coral Snake) Venom in Sheep. Lymphology 2012, 45, 144–153. [Google Scholar]
- Porter, C.J.H.; Charman, S.A. Lymphatic transport of proteins after subcutaneous administration. J. Pharm. Sci. 2000, 89, 297–310. [Google Scholar] [CrossRef]
- Oukkache, N.; Chgoury, F.; Lalaoui, M.; Alagon, A.C.; Ghalim, N. Comparaison between two methods of scorpion venom milking in Morocco. J. Venom. Anim. Toxins Trop. Dis. 2013, 19, 1–5. [Google Scholar] [CrossRef]
- Layne, E. Spectrophotometric and turbidimetric methods for measuring proteins. Methods Enzymol. 1957, 3, 447–455. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Oukkache, N.; Jaoudi, R.E.; Ghalim, N.; Chgoury, F.; Bouhaouala, B.; Mdaghri, N.E.; Sabatier, J.-M. Evaluation of the Lethal Potency of Scorpion and Snake Venoms and Comparison between Intraperitoneal and Intravenous Injection Routes. Toxins 2014, 6, 1873-1881. https://doi.org/10.3390/toxins6061873
Oukkache N, Jaoudi RE, Ghalim N, Chgoury F, Bouhaouala B, Mdaghri NE, Sabatier J-M. Evaluation of the Lethal Potency of Scorpion and Snake Venoms and Comparison between Intraperitoneal and Intravenous Injection Routes. Toxins. 2014; 6(6):1873-1881. https://doi.org/10.3390/toxins6061873
Chicago/Turabian StyleOukkache, Naoual, Rachid El Jaoudi, Noreddine Ghalim, Fatima Chgoury, Balkiss Bouhaouala, Naima El Mdaghri, and Jean-Marc Sabatier. 2014. "Evaluation of the Lethal Potency of Scorpion and Snake Venoms and Comparison between Intraperitoneal and Intravenous Injection Routes" Toxins 6, no. 6: 1873-1881. https://doi.org/10.3390/toxins6061873
APA StyleOukkache, N., Jaoudi, R. E., Ghalim, N., Chgoury, F., Bouhaouala, B., Mdaghri, N. E., & Sabatier, J.-M. (2014). Evaluation of the Lethal Potency of Scorpion and Snake Venoms and Comparison between Intraperitoneal and Intravenous Injection Routes. Toxins, 6(6), 1873-1881. https://doi.org/10.3390/toxins6061873