mRNA Expression of Two Colon Enzymes in Pre-Pubertal Gilts During a 42-Day Exposure to Zearalenone
Abstract
1. Introduction
2. Results
2.1. Feed
2.2. Clinical Signs
2.3. Strength of ZEN and Its Metabolites
2.4. Gene Expression of CYP1A1 and GSTπ1 Enzymes
3. Discussion
3.1. Biotransformation of ZEN
3.2. Gene Expression of CYP1A1 and GSTπ1 Enzymes in the Colon
3.2.1. CYP1A1 Gene in Phase I of the Biotransformation Process
3.2.2. GSTπ1 Gene Encoding Metabolic Enzymes in Phase II of the Biotransformation Process
3.2.3. Summary
4. Materials and Methods
4.1. Experimental Design
4.2. Experimental Feed
4.3. Toxicological Studies
4.3.1. Mycotoxin Analysis in Feed
4.3.2. Biotransformation of ZEN
Extraction and Purification
Chromatographic Quantification of ZEN, α-ZEL, and β-ZEL
Gradient Elution Conditions
Mass Spectrometry Condition
Statistical Analysis
4.4. Expression of CYP1A1 and GSTπ1 [65]
4.4.1. Sampling for RNA Extraction
4.4.2. RNA Extraction and cDNA Synthesis
4.4.3. qPCR
4.4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, X.; Huangfu, B.; Xu, T.; Xu, W.; Asakiya, C.; Huang, K.; He, X. Research Progress of Safety of Zearalenone: A Review. Toxins 2022, 14, 386. [Google Scholar] [CrossRef] [PubMed]
- Gajęcka, M.; Dąbrowski, M.; Otrocka-Domagała, I.; Brzuzan, P.; Rykaczewska, A.; Cieplińska, K.; Barasińska, M.; Gajęcki, M.T.; Zielonka, Ł. Correlations between exposure to deoxynivalenol and zearalenone and the immunohistochemical expression of estrogen receptors in the intestinal epithelium and the mRNA expression of selected colonic enzymes in pre-pubertal gilts. Toxicon 2020, 173, 75–93. [Google Scholar] [CrossRef] [PubMed]
- Steinkellner, H.; Binaglia, M.; Dall’Asta, C.; Gutleb, A.C.; Metzler, M.; Oswald, I.P.; Parent-Massin, D.; Alexander, J. Combined hazard assessment of mycotoxins and their modified forms applying relative potency factors: Zearalenone and T2/HT2 toxin. Food Chem. Toxicol. 2019, 131, 110599. [Google Scholar] [CrossRef]
- Zhena, H.; Hua, Y.; Xionga, K.; Lia, M.; Jin, W. The occurrence and biological control of zearalenone in cereals and cereal-based feedstuffs: A review. Food Addit. Contam. A 2024, 41, 1344–1359. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Xu, W.; Yang, F.; Wei, W.; Chen, X.; Zhang, Z.; Liu, Y. Reproductive Toxicity of Zearalenone and Its Molecular Mechanisms: A Review. Molecules 2025, 30, 505. [Google Scholar] [CrossRef]
- Balló, A.; Busznyákné Székvári, K.; Czétány, P.; Márk, L.; Török, A.; Szántó, Á.; Máté, G. Estrogenic and Non-Estrogenic Disruptor Effect of Zearalenone on Male Reproduction: A Review. Int. J. Mol. Sci. 2023, 24, 1578. [Google Scholar] [CrossRef]
- Wu, F.; Wang, F.; Tang, Z.; Yang, X.; Liu, Y.; Zhao, M.; Liu, S.; Han, S.; Zhang, Z.; Chen, B. Quercetagetin alleviates zearalenone-induced liver injury in rabbits through Keap1/Nrf2/ARE signaling pathway. Front. Pharmacol. 2023, 14, 1271384. [Google Scholar] [CrossRef]
- Lisieska-Żołnierczyk, S.; Gajęcka, M.; Dąbrowski, M.; Zielonka, Ł.; Gajęcki, M.T. A Cohort Study Investigating Zearalenone Concentrations and Selected Steroid Levels in Patients with Sigmoid Colorectal Cancer or Colorectal Cancer. Toxins 2024, 16, 15. [Google Scholar] [CrossRef]
- Kuć-Szymanek, A.; Kubik-Machura, D.; Kościelecka, K.; Męcik-Kronenberg, T.; Radko, L. Neurotoxicological Effects of Some Mycotoxins on Humans Health and Methods of Neuroprotection. Toxins 2025, 17, 24. [Google Scholar] [CrossRef]
- Lootens, O.; Vermeulen, A.; Croubels, S.; de Saeger, S.; van Bocxlaer, J.; de Boevre, M. Possible Mechanisms of the Interplay between Drugs and Mycotoxins—Is There a Possible Impact? Toxins 2022, 14, 873. [Google Scholar] [CrossRef]
- Zielonka, Ł.; Gajęcka, M.; Lisieska-Żołnierczyk, S.; Dąbrowski, M.; Gajęcki, M.T. The Effect of Different Doses of Zearalenone in Feed on the Bioavailability of Zearalenone and Alpha-Zearalenol, and the Concentrations of Estradiol and Testosterone in the Peripheral Blood of Pre-Pubertal Gilts. Toxins 2020, 12, 144. [Google Scholar] [CrossRef]
- Cieplińska, K.; Gajęcka, M.; Dąbrowski, M.; Rykaczewska, A.; Lisieska-Żołnierczyk, S.; Bulińska, M.; Zielonka, Ł.; Gajęcki, M.T. Time-dependent changes in the intestinal microbiome of gilts exposed to low zearalenone doses. Toxins 2019, 11, 296. [Google Scholar] [CrossRef]
- Ruan, H.; Huang, Y.; Yue, B.; Zhang, Y.; Lv, J.; Miao, K.; Zhang, D.; Luo, J.; Yang, M. Insights into the intestinal toxicity of foodborne mycotoxins through gut microbiota: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4758–4785. [Google Scholar] [CrossRef]
- Li, K.; Wang, S.; Qu, W.; Ahmed, A.A.; Enneb, W.; Obeidat, M.D.; Liu, H.-Y.; Dessie, T.; Kim, I.H.; Adam, S.Y.; et al. Natural products for Gut-Xaxis: Pharmacology, toxicology and microbiology in mycotoxin-caused diseases. Front. Pharmacol. 2024, 15, 1419844. [Google Scholar] [CrossRef]
- Cui, Y.; Guan, H.; Okyere, S.K.; Hua, Z.; Deng, Y.; Deng, H.; Ren, Z.; Deng, J. Microbial Guardians or Foes? Metagenomics Reveal Association of Gut Microbiota in Intestinal Toxicity Caused by DON in Mice. Int. J. Mol. Sci. 2025, 26, 1712. [Google Scholar] [CrossRef] [PubMed]
- Nabgan, M.; Shariatifar, N.; Zeinali, T. Comparative investigation of Mycotoxin detoxification mechanisms by lactic acid bacteria (Lactobacillus species) and non-lactic acid bacteria. J. Food Meas. Charact. 2025, 19, 3839–3866. [Google Scholar] [CrossRef]
- Tran, V.N.; Viktorová, J.; Ruml, T. Mycotoxins: Biotransformation and Bioavailability Assessment Using Caco-2 Cell Monolayer. Toxins 2020, 12, 628. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; et al. Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int. J. Mol. Sci. 2021, 22, 12808. [Google Scholar] [CrossRef] [PubMed]
- Kaci, H.; Dombi, Á.; Gömbös, P.; Szabó, A.; Bakoa, É.; Özvegy-Laczka, C.; Poór, M. Interaction of mycotoxins zearalenone, α-zearalenol, and β-zearalenol with cytochrome P450 (CYP1A2, 2C9, 2C19, 2D6, and 3A4) enzymes and organic anion transporting polypeptides (OATP1A2, OATP1B1, OATP1B3, and OATP2B1). Toxicol. In Vitro 2024, 96, 105789. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.E.; Lee, K.Y.; Seok, J.S.; Cheng, W.N.; Kwon, H.C.; Jeong, C.H.; Han, S.G. Zearalenone Induces Endoplasmic Reticulum Stress and Modulates the Expression of Phase I/II Enzymes in Human Liver Cells. Toxins 2020, 12, 2. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, Z.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Risks for animal health related to the presence of zearalenone and its modified forms in feed. J. EFSA 2017, 15, 4851. [Google Scholar] [CrossRef]
- Gajęcka, M.; Brzuzan, P.; Otrocka-Domagała, I.; Zielonka, Ł.; Lisieska-Żołnierczyk, S.; Gajęcki, M.T. The Effect of 42-Day Exposure to a Low Deoxynivalenol Dose on the Immunohistochemical Expression of Intestinal ERs and the Activation of CYP1A1 and GSTP1 Genes in the Large Intestine of Pre-pubertal Gilts. Front. Vet. Sci. 2021, 8, 64459. [Google Scholar] [CrossRef] [PubMed]
- Guilford, F.T.; Hope, J. Deficient Glutathione in the Pathophysiology of Mycotoxin-Related Illness. Toxins 2014, 6, 608–623. [Google Scholar] [CrossRef] [PubMed]
- Kłosowski, G.; Koim-Puchowska, B.; Dróżdż -Afelt, J.; Mikulski, D. The Reaction of the Yeast Saccharomyces cerevisiae to Contamination of the Medium with Aflatoxins B2 and G1, Ochratoxin A and Zearalenone in Aerobic Cultures. Int. J. Mol. Sci. 2023, 24, 16401. [Google Scholar] [CrossRef] [PubMed]
- Alnasser, S.M. The role of glutathione S-transferases in human disease pathogenesis and their current inhibitors. Genes Dis. 2024, 12, 101482. [Google Scholar] [CrossRef]
- Lv, N.; Huang, C.; Huang, H.; Dong, Z.; Chen, X.; Lu, C.; Zhang, Y. Overexpression of Glutathione S-Transferases in Human Diseases: Drug Targets and Therapeutic Implications. Antioxidants 2023, 12, 1970. [Google Scholar] [CrossRef]
- van Schaik, R.H. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist. Updates 2008, 11, 77–98. [Google Scholar] [CrossRef]
- Gajęcka, M.; Otrocka-Domagała, I.; Brzuzan, P.; Dąbrowski, M.; Lisieska-Żołnierczyk, S.; Zielonka, Ł.; Gajęcki, M.T. Immunohistochemical Expression (IE) of Oestrogen Receptors in the Intestines of Prepubertal Gilts Exposed to Zearalenone. Toxins 2023, 15, 122. [Google Scholar] [CrossRef]
- Mróz, M.; Gajęcka, M.; Brzuzan, P.; Lisieska-Żołnierczyk, S.; Leski, D.; Zielonka, Ł.; Gajęcki, M.T. Carry-Over of Zearalenone and Its Metabolites to Intestinal Tissues and the Expression of CYP1A1 and GSTπ1 in the Colon of Gilts before Puberty. Toxins 2022, 14, 354. [Google Scholar] [CrossRef]
- Suba, Z. Rosetta Stone for Cancer Cure: Comparison of the Anticancer Capacity of Endogenous Estrogens, Synthetic Etrogens and Antiestrogens. Oncol. Rev. 2023, 17, 10708. [Google Scholar] [CrossRef]
- Zhuo, Y.; Yang, P.; Hua, L.; Zhu, L.; Zhu, X.; Han, X.; Pang, X.; Xu, S.; Jiang, X.; Lin, Y.; et al. Effects of Chronic Exposure to Diets Containing Moldy Corn or Moldy Wheat Bran on Growth Performance, Ovarian Follicular Pool, and Oxidative Status of Gilts. Toxins 2022, 14, 413. [Google Scholar] [CrossRef]
- Suba, Z. Estrogen Withdrawal by Oophorectomy as Presumed Anticancer Means is a Major Medical Mistake. J. Fam. Med. Community Health 2016, 3, 1081. [Google Scholar]
- Nagl, V.; Grenier, B.; Pinton, P.; Ruczizka, U.; Dippel, M.; Bünger, M.; Oswald, I.P.; Soler, L. Exposure to Zearalenone Leads to Metabolic Disruption and Changes in Circulating Adipokines Concentrations in Pigs. Toxins 2021, 13, 790. [Google Scholar] [CrossRef]
- Sun, L.; Dai, J.; Xu, J.; Yang, J.; Zhang, D. Comparative Cytotoxic Effects and Possible Mechanisms of Deoxynivalenol, Zearalenone and T-2 Toxin Exposure to Porcine Leydig Cells In Vitro. Toxins 2022, 14, 113. [Google Scholar] [CrossRef]
- Ropejko, K.; Twarużek, M. Zearalenone and Its Metabolites—General Overview, Occurrence, and Toxicity. Toxins 2021, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed Sci. Technol. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Gajęcka, M.; Tarasiuk, M.; Zielonka, Ł.; Dąbrowski, M.; Gajęcki, M. Risk assessment for changes in the metabolic profile and body weights of pre-pubertal gilts during long-term monotonic exposure to low doses of zearalenone (ZEN). Res. Vet. Sci. 2016, 109, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Mahato, D.K.; Devi, S.; Pandhi, S.; Sharma, B.; Maurya, K.K.; Mishra, S.; Dhawan, K.; Selvakumar, R.; Kamle, M.; Mishra, A.K.; et al. Occurrence, Impact on Agriculture, Human Health, and Management Strategies of Zearalenone in Food and Feed: A Review. Toxins 2021, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- Guerre, P. Mycotoxins an Gut Microbiota Interactions. Toxins 2020, 12, 769. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K. The gastrointestinal tract in growth and reproduction. Sci. Am. 1989, 261, 78–83. Available online: https://www.jstor.org/stable/24987325 (accessed on 1 June 2025). [CrossRef]
- Kozieł, M.J.; Ziaja, M.; Piastowska-Ciesielska, A.W. Intestinal Barrier, Claudins and Mycotoxins. Toxins 2021, 13, 758. [Google Scholar] [CrossRef]
- Vaish, S.; Gupta, D.; Mehrotra, R.; Mehrotra, S.; Basantani, M.K. Glutathione S-transferase: A versatile protein family. 3 Biotech. 2020, 10, 321. [Google Scholar] [CrossRef] [PubMed]
- Flasch, M.; Bueschl, C.; Del Favero, G.; Adam, G.; Schuhmacher, R.; Marko, D.; Warth, B. Elucidation of xenoestrogen metabolism by non-targeted, stable isotope-assisted mass spectrometry in breast cancer cells. Environ. Int. 2022, 158, 106940. [Google Scholar] [CrossRef] [PubMed]
- Pierzgalski, A.; Bryła, M.; Kanabus, J.; Modrzewska, M.; Podolska, G. Updated Review of the Toxicity of Selected Fusarium Toxins and Their Modified Forms. Toxins 2021, 13, 768. [Google Scholar] [CrossRef] [PubMed]
- Bayala, B.; Zoure, A.A.; Baron, S.; de Joussineau, C.; Simpore, J.; Lobaccaro, J.M.A. Pharmacological Modulation of Steroid Activity in Hormone-Dependent Breast and Prostate Cancers: Effect of Some Plant Extract Derivatives. Int. J. Mol. Sci. 2020, 21, 3690. [Google Scholar] [CrossRef]
- Piotrowska-Kempisty, H.; Klupczynska, A.; Trzybulska, D.; Kulcenty, K.; Sulej-Suchomska, A.M.; Kucinska, M.; Mikstacka, R.; Wierzchowski, M.; Murias, M.; Baer-Dubowska, W.; et al. Role of CYP1A1 in the biological activity of methylated resveratrol analogue, 3,4,5,40-tetramethoxystilbene (DMU-212) in ovarian cancer A-2780 and non-cancerous HOSE cells. Toxicol. Lett. 2017, 267, 59–66. [Google Scholar] [CrossRef]
- Hevir-Kene, N.; Rižner, T.L. The endometrial cancer cell lines Ishikawa and HEC-1A, and the control cell line HIEEC, differ in expression of estrogen biosynthetic and metabolic genes, and in androstenedione and estrone-sulfate metabolism. Chem. Biol. Interact. 2015, 234, 309–319. [Google Scholar] [CrossRef]
- Rižner, T.L. Estrogen biosynthesis, phase I and phase II metabolism, and action in endometrial cancer. Mol. Cell. Endocrinol. 2013, 381, 124–139. [Google Scholar] [CrossRef]
- Lawrenz, B.; Melado, L.; Fatemi, H. Premature progesterone rise in ART-cycles. Reprod. Biol. 2018, 18, 1–4. [Google Scholar] [CrossRef]
- López-Calderero, I.; Carnero, A.; Astudillo, A.; Palacios, J.; Chaves, M.; Benavent, M. Prognostic relevance of estrogen receptor-α Ser167 phosphorylation in stage II-III colon cancer patients. Hum. Pathol. 2014, 45, 2437–2446. [Google Scholar] [CrossRef]
- Freedland, J.; Cera, C.; Fasullo, M. CYP1A1 I462V polymorphism is associated with reduced genotoxicity in yeast despite positive association with increased cancer risk. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2017, 815, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, X.; Li, Y.; Feng, S.; Zhang, Q.; Wang, W. Endocrine-disrupting metabolic activation of 2-nitrofluorene catalyzed by human cytochrome P450 1A1: A QM/MM approach. Environ. Int. 2022, 166, 107355. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Berhane, K.; McConnell, R.; Gauderman, W.J.; Avol, E.; Peters, J.M.; Gilliland, F.D. Glutathione-S-transferase (GST) P1, GSTM1, exercise, ozone and asthma incidence in school children. Thorax 2009, 64, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, Z.; Sahni, S.; Lok, H.; Davies, M.J.; Wink, D.A.; Richardson, D.R. Regulation and control of nitric oxide (NO) in macrophages: Protecting the “professional killer cell” from its own cytotoxic arsenal via MRP1and GSTP1. BBA Gen. Subj. 2017, 1861, 995–999. [Google Scholar] [CrossRef]
- Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [Google Scholar] [CrossRef]
- Dong, S.C.; Sha, H.H.; Xu, X.Y.; Hu, T.M.; Lou, R.; Li, H.; Wu, J.Z.; Dan, C.; Feng, J. Glutathione S-transferase π: A potential role in antitumor therapy. Drug Des. Dev. Ther. 2018, 12, 3535–3547. [Google Scholar] [CrossRef]
- Marchewka, Z.; Piwowar, A.; Ruzik, S.; Długosz, A. Glutathione S—Transferase class Pi and Mi and their significance in oncology. Postepy Hig. Med. Dosw. 2017, 71, 541–550. [Google Scholar] [CrossRef]
- Bocedi, A.; Noce, A.; Marrone, G.; Noce, G.; Cattani, G.; Gambardella, G.; Di Lauro, M.; Di Daniele, N.; Ricci, G. Glutathione Transferase P1-1 an Enzyme Useful in Biomedicine and as Biomarker in Clinical Practice and in Environmental Pollution. Nutrients 2019, 11, 1741. [Google Scholar] [CrossRef]
- Hokaiwado, N.; Takeshita, F.; Naiki-Ito, A.; Asamoto, M.; Ochiya, T.; Shirai, T. Glutathione Stransferase pi mediates proliferation of androgen- independent prostate cancer cells. Carcinogenesis 2009, 29, 1134–1138. [Google Scholar] [CrossRef]
- Basharat, Z.; Yasmin, A. Energy landscape of a GSTP1 polymorph linked with cytological function decay in response to chemical stressors. Gene 2017, 609, 19–27. [Google Scholar] [CrossRef]
- Smith, D.; Combes, R.; Depelchin, O.; Jacobsen, S.D.; Hack, R.; Luft, J. Optimising the design of preliminary toxicity studies for pharmaceutical safety testing in the dog. Regul. Toxicol. Pharm. 2005, 41, 95–101. [Google Scholar] [CrossRef]
- Heberer, T.; Lahrssen-Wiederholt, M.; Schafft, H.; Abraham, K.; Pzyrembel, H.; Henning, K.J.; Schauzu, M.; Braeunig, J.; Goetz, M.; Niemann, L.O.; et al. Zero tolerances in food and animal feed-Are there any scientific alternatives? A European point of view on an international controversy. Toxicol. Lett. 2007, 175, 118–135. [Google Scholar] [CrossRef]
- Commission Recommendation 2006/576/EC, of 17 August 2006 on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding. Off. J. Eur. Union Series L 2006, 229, 7–9.
- Pinton, P.; Terciolo, C.; Payros, D.; Oswald, I.P. Mycotoxins hazard: The European view. Curr. Opin. Food Sci. 2025, 63, 101306. [Google Scholar] [CrossRef]
- Gajęcka, M.; Mróz, M.; Brzuzan, P.; Onyszek, E.; Zielonka, Ł.; Lipczyńska-Ilczuk, K.; Przybyłowicz, K.E.; Babuchowski, A.; Gajęcki, M.T. Correlations between Low Doses of Zearalenone, Its Carryover Factor and Estrogen Receptor Expression in Different Segments of the Intestines in Pre-Pubertal Gilts—A Study Protocol. Toxins 2021, 13, 379. [Google Scholar] [CrossRef]
- Kostecki, M.; Goliński, P.; Chełkowski, J. Biosynthesis, isolation, separation and purification of nivalenol, fusarenone-X and zearalenone. Mycotoxin Res. 1991, 7 (Suppl. S2), 160–164. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Tohno, M.; Shimasato, T.; Moue, M.; Aso, H.; Watanabe, K.; Kawai, Y.; Yamaguchi, T.; Saito, T.; Kitazawa, H. Toll-like receptor 2 and 9 are expressed and functional in gut associated lymphoid tissues of presuckling newborn swine. Vet. Res. 2006, 37, 791–812. [Google Scholar] [CrossRef]
- Arukwe, A. Toxicological housekeeping genes: Do they really keep the house? Environ. Sci. Technol. 2006, 40, 7944–7949. [Google Scholar] [CrossRef] [PubMed]
- Spachmo, B.; Arukwe, A. Endocrine and developmental effects in Atlantic salmon (Salmo salar) exposed to perfluorooctane sulfonic or perfluorooctane carboxylic acids. Aquat. Toxicol. 2012, 108, 112–124. [Google Scholar] [CrossRef]
Week of Exposure | Feed Intake | Total ZEN Dose | |
---|---|---|---|
kg/Day | µg/Gilt | µg/kg Feed | |
1 | 1.1 | 280 | 1014 |
2 | 1.0 | 560 | 972 |
3 | 1.3 | 840 | 1014 |
4 | 1.6 | 1120 | 987 |
5 | 1.9 | 1400 | 995 |
6 | 1.7 | 1680 | 957 |
Percentage Content of Feed Ingredients | Nutritional Value of Diets | ||
---|---|---|---|
Barley | 27.65 | Metabolizable energy MJ/kg | 12.575 |
Wheat | 17.5 | Total protein (%) | 16.8 |
Triticale | 15.0 | Digestible protein (%) | 13.95 |
Maize | 17.5 | Lysine (g/kg) | 9.975 |
Soybean meal, 46% | 16.0 | Methionine + Cysteine (g/kg) | 6.25 |
Rapeseed meal | 3.5 | Calcium (g/kg) | 8.05 |
Limestone | 0.35 | Total phosphorus (g/kg) | 5.75 |
Premix 1 | 2.5 | Available phosphorus (g/kg) | 3.1 |
Sodium (g/kg) | 1.5 |
Analyte | Precursor | Quantification Ion | Confirmation Ion | LOD (ng/mL) | LOQ (ng/mL) | Linearity (%R2) |
---|---|---|---|---|---|---|
ZEN | 317.1 | 273.3 | 187.1 | 0.03 | 0.1 | 0.999 |
α-ZEL | 319.2 | 275.2 | 160.1 | 0.3 | 0.9 | 0.997 |
β-ZEL | 319.2 | 275.2 | 160.1 | 0.3 | 1 | 0.993 |
Primer | Sequence (5’→3’) | Amplicon Length (bp) | References | |
---|---|---|---|---|
CYP1A1 | Forward | cagagccgcagcagccaccttg | 226 | [65] |
Reverse | ggctcttgcccaaggtcagcac | |||
GSTπ1 | Forward | acctgcttcggattcaccag | 178 | [65] |
Reverse | ctccagccacaaagccctta | |||
β-actin | Forward | catcaccatcggcaaaga | 237 | [68] |
Reverse | Gcgtagaggtccttcctgatgt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajęcka, M.; Zielonka, Ł.; Gajęcki, M.T. mRNA Expression of Two Colon Enzymes in Pre-Pubertal Gilts During a 42-Day Exposure to Zearalenone. Toxins 2025, 17, 357. https://doi.org/10.3390/toxins17070357
Gajęcka M, Zielonka Ł, Gajęcki MT. mRNA Expression of Two Colon Enzymes in Pre-Pubertal Gilts During a 42-Day Exposure to Zearalenone. Toxins. 2025; 17(7):357. https://doi.org/10.3390/toxins17070357
Chicago/Turabian StyleGajęcka, Magdalena, Łukasz Zielonka, and Maciej T. Gajęcki. 2025. "mRNA Expression of Two Colon Enzymes in Pre-Pubertal Gilts During a 42-Day Exposure to Zearalenone" Toxins 17, no. 7: 357. https://doi.org/10.3390/toxins17070357
APA StyleGajęcka, M., Zielonka, Ł., & Gajęcki, M. T. (2025). mRNA Expression of Two Colon Enzymes in Pre-Pubertal Gilts During a 42-Day Exposure to Zearalenone. Toxins, 17(7), 357. https://doi.org/10.3390/toxins17070357