Genomics and Transcriptomics of 3ANX (NX-2) and NX (NX-3) Producing Isolates of Fusarium graminearum
Abstract
:1. Introduction
2. Results
2.1. F. graminearum Isolate Growth and Pathogenicity
2.2. Variant Identification and Differential Expression of Pathogenicity Factors in F. graminearum Isolates
2.3. Regional F. graminearum Populations Show Distinct Expression Patterns and Conserved Genomic Variants
2.4. Variant Identification Between 3ADON and 15ADON Chemotypes
2.5. Mycotoxin Profiling Using High-Resolution Mass Spectrometry
3. Discussion
4. Materials and Methods
4.1. Culturing of F. graminearum Isolates
4.2. Plant Material and Disease Assessment
4.3. DNA Extraction
4.4. F. graminearum Identification Using PCR
4.5. F. graminearum In Vitro Growth Rate
4.6. F. graminearum Trichothecene Chemotype Identification
4.7. F. graminearum Culture in Rice Media
4.8. Mycotoxin Profiling Using UHPLC-HRMS
4.9. Whole Genome Sequencing and Genome Assembly
4.10. RNA Sequencing and Data Processing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FHB | Fusarium head blight |
DON | deoxynivalenol |
3ADON | 3-acetyl deoxynivalenol |
15ADON | 15-acetyl deoxynivalenol |
NIV | nivalenol |
DPI | days post inoculation |
HRMS | high-resolution mass spectrometry |
UHPLC | ultra-high-performance liquid chromatography |
GO | gene ontology |
DEG | differentially expressed gene |
References
- Dawson, A. Fusarium Conference Hears of Disease Resurgence; Manitoba Co-operator: Ottawa, ON, Canada, 2016. [Google Scholar]
- Shah, D.A.; De Wolf, E.D.; Paul, P.A.; Madden, L.V. Predicting Fusarium Head Blight Epidemics with Boosted Regression Trees. Phytopathology 2014, 104, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Hay, W.T.; Anderson, J.A.; McCormick, S.P.; Hojilla-Evangelista, M.P.; Selling, G.W.; Utt, K.D.; Bowman, M.J.; Doll, K.M.; Ascherl, K.L.; Berhow, M.A.; et al. Fusarium Head Blight Resistance Exacerbates Nutritional Loss of Wheat Grain at Elevated CO2. Sci. Rep. 2022, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Kim, K.-H.; Kang, C.-S.; Cho, K.-M.; Park, C.S.; Okagaki, R.; Park, J.-C. A Simple Method for the Assessment of Fusarium Head Blight Resistance in Korean Wheat Seedlings Inoculated with Fusarium graminearum. Plant Pathol. J. 2014, 30, 25–32. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From Simple to Complex Mycotoxins. Toxins 2011, 3, 802–814. [Google Scholar] [CrossRef]
- Ramírez Albuquerque, D.; Patriarca, A.; Fernández Pinto, V. Can Discrepancies between Fusarium graminearum Trichothecene Genotype and Chemotype Be Explained by the Influence of Temperature in the Relative Production of 3-ADON and 15-ADON? Fungal Biol. 2021, 125, 153–159. [Google Scholar] [CrossRef]
- Foroud, N.A.; Baines, D.; Gagkaeva, T.Y.; Thakor, N.; Badea, A.; Steiner, B.; Bürstmayr, M.; Bürstmayr, H. Trichothecenes in Cereal Grains—An Update. Toxins 2019, 11, 634. [Google Scholar] [CrossRef]
- Schiwek, S.; Alhussein, M.; Rodemann, C.; Budragchaa, T.; Beule, L.; von Tiedemann, A.; Karlovsky, P. Fusarium culmorum Produces NX-2 Toxin Simultaneously with Deoxynivalenol and 3-Acetyl-Deoxynivalenol or Nivalenol. Toxins 2022, 14, 456. [Google Scholar] [CrossRef]
- Crippin, T.; Renaud, J.B.; Sumarah, M.W.; Miller, J.D. Comparing Genotype and Chemotype of Fusarium graminearum from Cereals in Ontario, Canada. PLoS ONE 2019, 14, e0216735. [Google Scholar] [CrossRef]
- Gilbert, J.; Clear, R.M.; Ward, T.J.; Gaba, D.; Tekauz, A.; Turkington, T.K.; Woods, S.M.; Nowicki, T.; O’Donnell, K. Relative Aggressiveness and Production of 3- or 15-Acetyl Deoxynivalenol and Deoxynivalenol by Fusarium graminearum in Spring Wheat. Can. J. Plant Pathol. 2010, 32, 146–152. [Google Scholar] [CrossRef]
- Kelly, A.C.; Clear, R.M.; O’Donnell, K.; McCormick, S.; Turkington, T.K.; Tekauz, A.; Gilbert, J.; Kistler, H.C.; Busman, M.; Ward, T.J. Diversity of Fusarium Head Blight Populations and Trichothecene Toxin Types Reveals Regional Differences in Pathogen Composition and Temporal Dynamics. Fungal Genet. Biol. 2015, 82, 22–31. [Google Scholar] [CrossRef]
- Bamforth, J.; Chin, T.; Ashfaq, T.; Gamage, N.W.; Pleskach, K.; Tittlemier, S.A.; Henriquez, M.A.; Kurera, S.; Lee, S.-J.; Patel, B.; et al. A Survey of Fusarium Species and ADON Genotype on Canadian Wheat Grain. Front. Fungal Biol. 2022, 3, 1062444. [Google Scholar] [CrossRef] [PubMed]
- Oghenekaro, A.O.; Oviedo-Ludena, M.A.; Serajazari, M.; Wang, X.; Henriquez, M.A.; Wenner, N.G.; Kuldau, G.A.; Navabi, A.; Kutcher, H.R.; Fernando, W.G.D. Population Genetic Structure and Chemotype Diversity of Fusarium graminearum Populations from Wheat in Canada and North Eastern United States. Toxins 2021, 13, 180. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak, S.; Bonner, C.T.; Wang, L.; Blackwell, B.; Rowland, O.; Subramaniam, R. Intraspecies Interaction of Fusarium graminearum Contributes to Reduced Toxin Production and Virulence. Mol. Plant-Microbe Interact. MPMI 2015, 28, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Gale, L.R.; Ward, T.J.; Kistler, H.C. A Subset of the Newly Discovered Northland Population of Fusarium graminearum from the U.S. Does Not Produce the B-Type Trichothecenes DON, 15ADON, 3ADON or NIV. In Proceedings of the National Fusarium Head Blight Forum, Milwaukee, WI, USA, 7–9 December 2010; pp. 48–49. [Google Scholar]
- Kelly, A.; Proctor, R.H.; Belzile, F.; Chulze, S.N.; Clear, R.M.; Cowger, C.; Elmer, W.; Lee, T.; Obanor, F.; Waalwijk, C.; et al. The Geographic Distribution and Complex Evolutionary History of the NX-2 Trichothecene Chemotype from Fusarium graminearum. Fungal Genet. Biol. 2016, 95, 39–48. [Google Scholar] [CrossRef]
- Henriquez, M.A.; Sura, S.; Walkowiak, S.; Kaminski, D.; Derksen, H. The First Large Identification of 3ANX and NX Producing Isolates of Fusarium graminearum in Manitoba, Western Canada. Toxins 2025, 17, 45. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, M.; Zhang, J.; Yang, X.; Abdallah, M.F.; Wang, J. Phylogenetic Variation of Tri1 Gene and Development of PCR-RFLP Analysis for the Identification of NX Genotypes in Fusarium graminearum Species Complex. Toxins 2023, 15, 692. [Google Scholar] [CrossRef]
- Pierron, A.; Neves, M.; Puel, S.; Lippi, Y.; Soler, L.; Miller, J.D.; Oswald, I.P. Intestinal Toxicity of the New Type a Trichothecenes, NX and 3ANX. Chemosphere 2021, 288, 132415. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Wang, H.; Yang, X.; Zhang, C.; Zhao, Z.; Wang, J. NX Toxins: New Threat Posed by Fusarium graminearum Species Complex. Trends Food Sci. Technol. 2022, 119, 179–191. [Google Scholar] [CrossRef]
- Lofgren, L.; Riddle, J.; Dong, Y.; Kuhnem, P.R.; Cummings, J.A.; Del Ponte, E.M.; Bergstrom, G.C.; Kistler, H.C. A High Proportion of NX-2 Genotype Strains Are Found among Fusarium graminearum Isolates from Northeastern New York State. Eur. J. Plant Pathol. 2017, 150, 791–796. [Google Scholar] [CrossRef]
- Guo, X.W.; Fernando, W.G.D.; Seow-Brock, H.Y. Population Structure, Chemotype Diversity, and Potential Chemotype Shifting of Fusarium graminearum in Wheat Fields of Manitoba. Plant Dis. 2008, 92, 756–762. [Google Scholar] [CrossRef]
- Mishra, P.K.; Tewari, J.P.; Clear, R.M.; Turkington, T.K. Molecular Genetic Variation and Geographical Structuring in Fusarium graminearum. Ann. Appl. Biol. 2004, 145, 299–307. [Google Scholar] [CrossRef]
- Chin, T.; Pleskach, K.; Tittlemier, S.A.; Henriquez, M.A.; Bamforth, J.; Gamage, N.W.; Ashfaq, T.; Lee, S.-J.; Kurera, M.S.; Patel, B.; et al. A Status Update on Fusarium Head Blight on Western Canadian Wheat. Can. J. Plant Pathol. 2023, 45, 277–289. [Google Scholar] [CrossRef]
- Manitoba Agricultural Services Corporation (MASC). Variety Market Share Report. 2019. Available online: https://www.masc.mb.ca/masc.nsf/sar_varieties_2019.pdf (accessed on 19 May 2020).
- Alouane, T.; Rimbert, H.; Bormann, J.; González-Montiel, G.A.; Loesgen, S.; Schäfer, W.; Freitag, M.; Langin, T.; Bonhomme, L. Comparative Genomics of Eight Fusarium graminearum Strains with Contrasting Aggressiveness Reveals an Expanded Open Pangenome and Extended Effector Content Signatures. Int. J. Mol. Sci. 2021, 22, 6257. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.C.; Ward, T.J. Population Genomics of Fusarium graminearum Reveals Signatures of Divergent Evolution within a Major Cereal Pathogen. PLoS ONE 2018, 13, e0194616. [Google Scholar] [CrossRef]
- Rauwane, M.E.; Ogugua, U.V.; Kalu, C.M.; Ledwaba, L.K.; Woldesemayat, A.A.; Ntushelo, K. Pathogenicity and Virulence Factors of Fusarium graminearum Including Factors Discovered Using next Generation Sequencing Technologies and Proteomics. Microorganisms 2020, 8, 305. [Google Scholar] [CrossRef]
- Brown, N.A.; Evans, J.; Mead, A.; Hammond-Kosack, K.E. A Spatial Temporal Analysis of the Fusarium graminearum Transcriptome during Symptomless and Symptomatic Wheat Infection. Mol. Plant Pathol. 2017, 18, 1295–1312. [Google Scholar] [CrossRef]
- Rocheleau, H.; Al-harthi, R.; Ouellet, T. Degradation of Salicylic Acid by Fusarium graminearum. Fungal Biol. 2019, 123, 77–86. [Google Scholar] [CrossRef]
- Stephens, A.E.; Gardiner, D.M.; White, R.G.; Munn, A.L.; Manners, J.M. Phases of Infection and Gene Expression of Fusarium graminearum during Crown Rot Disease of Wheat. Mol. Plant-Microbe Interact. 2008, 21, 1571–1581. [Google Scholar] [CrossRef]
- Alexander, N.J.; McCormick, S.P.; Waalwijk, C.; van der Lee, T.; Proctor, R.H. The Genetic Basis for 3-ADON and 15-ADON Trichothecene Chemotypes in Fusarium. Fungal Genet. Biol. 2011, 48, 485–495. [Google Scholar] [CrossRef]
- Dhakal, U.; Kim, H.-S.; Toomajian, C. The Landscape and Predicted Roles of Structural Variants in Fusarium graminearum Genomes. G3 Genes Genomes Genet. 2024, 14, jkae065. [Google Scholar] [CrossRef]
- Liang, J.M.; Xayamongkhon, H.; Broz, K.; Dong, Y.; McCormick, S.P.; Abramova, S.; Ward, T.J.; Ma, Z.H.; Kistler, H.C. Temporal Dynamics and Population Genetic Structure of Fusarium graminearum in the Upper Midwestern United States. Fungal Genet. Biol. 2014, 73, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Ramdass, A.C.; Villafana, R.T.; Rampersad, S.N. Comparative Sequence Analysis of TRI1 of Fusarium. Toxins 2019, 11, 689. [Google Scholar] [CrossRef] [PubMed]
- Ward, T.J.; Clear, R.M.; Rooney, A.P.; O’Donnell, K.; Gaba, D.; Patrick, S.; Starkey, D.E.; Gilbert, J.; Geiser, D.M.; Nowicki, T.W. An Adaptive Evolutionary Shift in Fusarium Head Blight Pathogen Populations Is Driving the Rapid Spread of More Toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 2008, 45, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Puri, K.D.; Zhong, S. The 3ADON Population of Fusarium graminearum Found in North Dakota Is More Aggressive and Produces a Higher Level of DON than the Prevalent 15ADON Population in Spring Wheat. Phytopathology 2010, 100, 1007–1014. [Google Scholar] [CrossRef]
- Tucker, J.R.; Legge, W.G.; Maiti, S.; Hiebert, C.W.; Simsek, S.; Yao, Z.; Xu, W.; Badea, A.; Fernando, W.G.D. Transcriptome Alterations of an in Vitro-Selected, Moderately Resistant, Two-Row Malting Barley in Response to 3ADON, 15ADON, and NIV Chemotypes of Fusarium graminearum. Front. Plant Sci. 2021, 12, 701969. [Google Scholar] [CrossRef]
- von der Ohe, C.; Ebmeyer, E.; Korzun, V.; Miedaner, T. Agronomic and Quality Performance of Winter Wheat Backcross Populations Carrying Non-Adapted Fusarium Head Blight Resistance QTL. Crop Sci. 2010, 50, 2283–2290. [Google Scholar] [CrossRef]
- Berthiller, F.; Lemmens, M.; Werner, U.; Krska, R.; Hauser, M.T.; Adam, G.; Schuhmacher, R. Short Review: Metabolism of TheFusarium Mycotoxins Deoxynivalenol and Zearalenone in Plants. Mycotoxin Res. 2007, 23, 68–72. [Google Scholar] [CrossRef]
- Tian, Y.; Tan, Y.; Liu, N.; Yan, Z.; Liao, Y.; Chen, J.; de Saeger, S.; Yang, H.; Zhang, Q.; Wu, A. Detoxification of Deoxynivalenol via Glycosylation Represents Novel Insights on Antagonistic Activities of Trichoderma When Confronted with Fusarium graminearum. Toxins 2016, 8, 335. [Google Scholar] [CrossRef]
- Spanic, V.; Zdunic, Z.; Drezner, G.; Sarkanj, B. The Pressure of Fusarium Disease and Its Relation with Mycotoxins in the Wheat Grain and Malt. Toxins 2019, 11, 198. [Google Scholar] [CrossRef]
- Xian, L.; Zhang, Y.; Hu, Y.; Zhu, S.; Wen, Z.; Hua, C.; Li, L.; Sun, Z.; Li, T. Mycotoxin DON Accumulation in Wheat Grains Caused by Fusarium Head Blight Are Significantly Subjected to Inoculation Methods. Toxins 2022, 14, 409. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Yang, J.; Yang, X.; Zhang, J.; Zhao, Z. Type a Trichothecene Metabolic Profile Differentiation, Mechanisms, Biosynthetic Pathways, and Evolution in Fusarium Species—A Mini Review. Toxins 2023, 15, 446. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.K.; Yu, J.; Lee, K.-M.; Son, M.; Min, K.; Lee, Y.-W.; Kim, K.-H. Genome-Wide Expression Profiling Shows Transcriptional Reprogramming in Fusarium graminearum by Fusarium graminearum Virus 1-DK21 Infection. BMC Genom. 2012, 13, 173. [Google Scholar] [CrossRef]
- Tan, K.C.; Oliver, R.P.; Solomon, P.S.; Moffat, C.S. Proteinaceous necrotrophic effectors in fungal virulence. Funct. Plant Biol. 2010, 37, 907–912. [Google Scholar] [CrossRef]
- Rodríguez-Gabriel, M.A.; Burns, G.; McDonald, W.J.; Martín, V.; Yates, J.R.; Bähler, J.; Russell, P. RNA-Binding Protein Csx1 Mediates Global Control of Gene Expression in Response to Oxidative Stress. EMBO J. 2003, 22, 6256–6266. [Google Scholar] [CrossRef] [PubMed]
- Bormann, J.; Heinze, C.; Blum, C.; Mentges, M.; Brockmann, A.; Alder, A.; Landt, S.K.; Josephson, B.; Indenbirken, D.; Spohn, M.; et al. Expression of a Structural Protein of the Mycovirus FgV-Ch9 Negatively Affects the Transcript Level of a Novel Symptom Alleviation Factor and Causes Virus Infection-like Symptoms In Fusarium graminearum. J. Virol. 2018, 92, 10–1128. [Google Scholar] [CrossRef]
- Pestka, J.J. Deoxynivalenol: Mechanisms of Action, Human Exposure, and Toxicological Relevance. Arch. Toxicol. 2010, 84, 663–679. [Google Scholar] [CrossRef]
- Jastrzębowska, K.; Gabriel, I. Inhibitors of Amino Acids Biosynthesis as Antifungal Agents. Amino Acids 2014, 47, 227–249. [Google Scholar] [CrossRef]
- Danicke, S.; Goyarts, T.; Doll, S.; Grove, N.; Spolders, M.; Flachowsky, G. Effects of the Fusarium Toxin Deoxynivalenol on Tissue Protein Synthesis in Pigs. Toxicol. Lett. 2006, 165, 297–311. [Google Scholar] [CrossRef]
- Di, R.; Tumer, N.E. Expression of a Truncated Form of Ribosomal Protein L3 Confers Resistance to Pokeweed Antiviral Protein and the Fusarium Mycotoxin Deoxynivalenol. Mol. Plant-Microbe Interact. 2005, 18, 762–770. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Li, Y.; Bi, Y.; Mao, R.; Yang, Y.; Jiang, Q.; Prusky, D. Cellular Responses Required for Oxidative Stress Tolerance of the Necrotrophic Fungus Alternaria Alternata, Causal Agent of Pear Black Spot. Microorganisms 2022, 10, 621. [Google Scholar] [CrossRef]
- Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, Oxidants, and Aging. Cell 2005, 120, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Chen, M.; Long, X.; Yang, H.; Zhu, D. Biological Potential of Bacillus Subtilis BS45 to Inhibit the Growth of Fusarium graminearum through Oxidative Damage and Perturbing Related Protein Synthesis. Front. Microbiol. 2023, 14, 1064838. [Google Scholar] [CrossRef] [PubMed]
- Chandler, C.E.; Hernandez, F.G.; Totten, M.; Robinett, N.G.; Schatzman, S.S.; Zhang, S.X.; Culotta, V.C. Biochemical Analysis of CaurSOD4, a Potential Therapeutic Target for the Emerging Fungal Pathogen Candida auris. ACS Infect. Dis. 2022, 8, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.-H.; Guo, Y.; Wang, Y.-Z.; Zhang, D.; Xu, L.; Tang, W.-H. A Cytoplasmic Cu-Zn Superoxide Dismutase SOD1 Contributes to Hyphal Growth and Virulence of Fusarium graminearum. Fungal Genet. Biol. 2016, 91, 32–42. [Google Scholar] [CrossRef]
- Mattila, H.; Österman-Udd, J.; Mali, T.; Lundell, T. Basidiomycota Fungi and ROS: Genomic Perspective on Key Enzymes Involved in Generation and Mitigation of Reactive Oxygen Species. Front. Fungal Biol. 2022, 3, 837605. [Google Scholar] [CrossRef]
- Fontanesi, F.; Soto, I.C.; Barrientos, A. Cytochrome c Oxidase Biogenesis: New Levels of Regulation. IUBMB Life 2008, 60, 557–568. [Google Scholar] [CrossRef]
- Wang, X.; Xie, X.; Liu, J.; Wang, G.-L.; Qiu, D. Nascent Polypeptide-Associated Complex Involved in the Development and Pathogenesis of Fusarium graminearum on Wheat. Engineering 2020, 6, 546–552. [Google Scholar] [CrossRef]
- Mahmoud, A.F. Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt. Plant Pathol. J. 2016, 32, 145–156. [Google Scholar] [CrossRef]
- Pangga, I.B.; Hanan, J.; Chakraborty, S. Pathogen Dynamics in a Crop Canopy and Their Evolution under Changing Climate. Plant Pathol. 2011, 60, 70–81. [Google Scholar] [CrossRef]
- Martínez, M.; Ramírez Albuquerque, L.; Arata, A.F.; Biganzoli, F.; Fernández Pinto, V.; Stenglein, S.A. Effects of Fusarium graminearum and Fusarium Poae on Disease Parameters, Grain Quality and Mycotoxins Contamination in Bread Wheat (Part I). J. Sci. Food Agric. 2020, 100, 863–873. [Google Scholar] [CrossRef]
- Rossi, V.; Ravanetti, A.; Pattori, E.; Giosuè, S. Influence of temperature and humidity on the infection of wheat spikes by some fungi causing fusarium head blight. J. Plant Pathol. 2001, 83, 189–198. [Google Scholar]
- Alisaac, E.; Rathgeb, A.; Karlovsky, P.; Mahlein, A.-K. Fusarium Head Blight: Effect of Infection Timing on Spread of Fusarium graminearum and Spatial Distribution of Deoxynivalenol within Wheat Spikes. Microorganisms 2020, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Buttar, Z.A.; Cheng, M.; Wei, P.; Zhang, Z.; Lv, C.; Zhu, C.; Ali, N.F.; Kang, G.; Wang, D.; Zhang, K. Update on the Basic Understanding of Fusarium graminearum Virulence Factors in Common Wheat Research. Plants 2024, 13, 1159. [Google Scholar] [CrossRef] [PubMed]
- Jayathissa, A.U.; Tucker, J.R.; Badea, A.; Fernando, W.G.D.; Bakker, M.G. Impacts of Pathogen Strain and Barley Cultivar on Fusarium Head Blight in Barley and during Malting. Plant Pathol. 2024, 73, 1874–1885. [Google Scholar] [CrossRef]
- Lee, J.; Chang, I.-Y.; Kim, H.; Yun, S.-H.; Leslie, J.F.; Lee, Y.-W. Genetic Diversity and Fitness of Fusarium graminearum Populations from Rice in Korea. Appl. Environ. Microbiol. 2009, 75, 3289–3295. [Google Scholar] [CrossRef]
- Varga, E.; Wiesenberger, G.; Hametner, C.; Ward, T.J.; Dong, Y.; Schöfbeck, D.; McCormick, S.P.; Broz, K.; Stückler, R.; Schuhmacher, R.; et al. New Tricks of an Old Enemy: Isolates of Fusarium graminearum Produce a Type a Trichothecene Mycotoxin. Environ. Microbiol. 2015, 17, 2588–2600. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal Code for the Growth Stages of Cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Hughes, G.; Hucl, P. CDC Teal Hard Red Spring Wheat. Can. J. Plant Sci. 1993, 73, 193–197. [Google Scholar] [CrossRef]
- Canadian Food Inspection Agency. Plant Varieties: 5602HR; Government of Canada: Guelph, Canada, 2004; Available online: https://active.inspection.gc.ca/english/plaveg/pbrpov/cropreport/whe/app00004924e.shtml (accessed on 4 December 2024).
- Nilsen, K.T.; Walkowiak, S.; Kumar, S.; Molina, O.I.; Randhawa, H.S.; Dhariwal, R.; Byrns, B.; Pozniak, C.J.; Henriquez, M.A. Histology and RNA Sequencing Provide Insights into Fusarium Head Blight Resistance in AAC Tenacious. Front. Plant Sci. 2021, 11, 570418. [Google Scholar] [CrossRef]
- Nicholson, P.; Simpson, D.R.; Weston, G.; Rezanoor, H.N.; Lees, A.K.; Parry, D.W.; Joyce, D. Detection and Quantification OfFusarium Culmorumand Fusarium graminearum in Cereals Using PCR Assays. Physiol. Mol. Plant Pathol. 1998, 53, 17–37. [Google Scholar] [CrossRef]
- The Fusarium Laboratory Manual; Leslie, J.F., Summerell, B.A., Eds.; Blackwell Publishing: Ames, IA, USA, 2006. [Google Scholar] [CrossRef]
- Starkey, D.E.; Ward, T.J.; Aoki, T.; Gale, L.R.; Kistler, H.C.; Geiser, D.M.; Suga, H.; Tóth, B.; Varga, J.; O’Donnell, K. Global Molecular Surveillance Reveals Novel Fusarium Head Blight Species and Trichothecene Toxin Diversity. Fungal Genet. Biol. 2007, 44, 1191–1204. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Jackman, S.D.; Vandervalk, B.P.; Mohamadi, H.; Chu, J.; Yeo, S.; Hammond, S.A.; Jahesh, G.; Khan, H.; Coombe, L.; Warren, R.L.; et al. ABySS 2.0: Resource-Efficient Assembly of Large Genomes Using a Bloom Filter. Genome Res. 2017, 27, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Delcher, A.L. Fast Algorithms for Large-Scale Genome Alignment and Comparison. Nucleic Acids Res. 2002, 30, 2478–2483. [Google Scholar] [CrossRef]
- Li, H. A Statistical Framework for SNP Calling, Mutation Discovery, Association Mapping and Population Genetical Parameter Estimation from Sequencing Data. Bioinformatics 2011, 27, 2987–2993. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2019, 36, 2628–2629. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2013, 30, 923–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A Web-Based Tool for the Analysis of Sets through Venn Diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef]
- Chen, Y.; Lun, A.T.L.; Smyth, G.K. From Reads to Genes to Pathways: Differential Expression Analysis of RNA-Seq Experiments Using Rsubread and the EdgeR Quasi-Likelihood Pipeline. F1000Research 2016, 5, 1438. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walker, P.L.; Walkowiak, S.; Sura, S.; Ojo, E.R.; Henriquez, M.A. Genomics and Transcriptomics of 3ANX (NX-2) and NX (NX-3) Producing Isolates of Fusarium graminearum. Toxins 2025, 17, 284. https://doi.org/10.3390/toxins17060284
Walker PL, Walkowiak S, Sura S, Ojo ER, Henriquez MA. Genomics and Transcriptomics of 3ANX (NX-2) and NX (NX-3) Producing Isolates of Fusarium graminearum. Toxins. 2025; 17(6):284. https://doi.org/10.3390/toxins17060284
Chicago/Turabian StyleWalker, Philip L., Sean Walkowiak, Srinivas Sura, E. RoTimi Ojo, and Maria A. Henriquez. 2025. "Genomics and Transcriptomics of 3ANX (NX-2) and NX (NX-3) Producing Isolates of Fusarium graminearum" Toxins 17, no. 6: 284. https://doi.org/10.3390/toxins17060284
APA StyleWalker, P. L., Walkowiak, S., Sura, S., Ojo, E. R., & Henriquez, M. A. (2025). Genomics and Transcriptomics of 3ANX (NX-2) and NX (NX-3) Producing Isolates of Fusarium graminearum. Toxins, 17(6), 284. https://doi.org/10.3390/toxins17060284