Mycotoxin Research in Algeria: A Comprehensive Review of Trends, Challenges, and Future Directions
Abstract
1. Introduction
2. Research Methodology
3. Evolution of Mycotoxin Research in Algeria
3.1. Foundation Phase (2008–2010)
3.2. Expansion Phase (2011–2015)
3.3. Consolidation Phase (2016-2020)
3.4. Diversification Phase (2021–2024)
4. Mycotoxin Contamination in Algerian Agriculture and Food Supply
5. Methods and Challenges in Mycotoxin Analysis
6. Bridging the Gap: Future Research Directions
- (a)
- Given the limited application of advanced technologies in mycotoxin detection, there is growing interest in exploring traditional Algerian food preservation practices and natural compounds believed to mitigate mycotoxin contamination. Researchers are investigating time-honored techniques passed down through generations, aiming to uncover culturally relevant and sustainable strategies.
- (b)
- Building resilient surveillance systems involves implementing simple yet effective methods to monitor mycotoxin levels in Algerian agricultural products and regions. This proactive approach allows for the early identification of areas with high contamination risks, enabling prompt intervention measures despite technological limitations.
- (c)
- Algerian researchers foster interdisciplinary teamwork among experts from agriculture, food science, microbiology, and public health to develop comprehensive solutions to mycotoxin contamination. Leveraging diverse expertise enables a deeper understanding of contamination factors, facilitating holistic approaches despite limited technological advancements.
- (d)
- Collaboration with international institutions, industry stakeholders, and governmental organizations remains crucial for accessing funding, expertise, and advanced technologies. Sharing resources and exchanging knowledge helps overcome limitations posed by scarce resources, accelerating research and development efforts in mycotoxin mitigation.
- (e)
- Implementing training programs and workshops is essential for enhancing the skills and knowledge of local researchers, extension workers, and food industry professionals. Investing in human capital strengthens Algeria’s research infrastructure and establishes a sustainable framework for addressing mycotoxin contamination in the absence of advanced technology.
- (f)
- Conducting thorough risk assessments remains vital for identifying situations with high mycotoxin exposure risks and vulnerable population groups despite technological limitations. Developing targeted management strategies, such as promoting traditional agricultural practices and implementing regulatory measures, is essential for effectively mitigating risks and ensuring compliance with food safety standards.
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mateus, A.R.S.; Barros, S.; Pena, A.; Sanches Silva, A. Mycotoxins in pistachios (Pistacia vera L.): Methods for determination, occurrence, decontamination. Toxins 2021, 13, 682. [Google Scholar] [CrossRef]
- Khodaei, D.; Javanmardi, F.; Khaneghah, A.M. The global overview of the occurrence of mycotoxins in cereals: A three-year survey. Curr. Opin. Food Sci. 2021, 39, 36–42. [Google Scholar] [CrossRef]
- Pandey, A.K.; Samota, M.K.; Silva, A.S. Mycotoxins along the tea supply chain: A dark side of an ancient and high valued aromatic beverage. Crit. Rev. Food Sci. Nutr. 2022, 63, 8672–8697. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elsalam, K.A.; Hashim, A.F.; Alghuthaymi, M.A.; Said-Galiev, E. Nanobiotechnological strategies for toxigenic fungi and mycotoxin control. In Food Preservation; Grumezescu, A.M., Ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2017; pp. 337–364. [Google Scholar] [CrossRef]
- Kos, J.; Anić, M.; Radić, B.; Zadravec, M.; Janić Hajnal, E.; Pleadin, J. Climate change—A global threat resulting in increasing mycotoxin occurrence. Foods 2023, 12, 2704. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. European Food Safety Authority. EFSA J. 2014, 12, 3916. [Google Scholar] [CrossRef]
- Chilaka, C.A.; Obidiegwu, J.E.; Chilaka, A.C.; Atanda, O.O.; Mally, A. Mycotoxin regulatory status in Africa: A decade of weak institutional efforts. Toxins 2022, 14, 442. [Google Scholar] [CrossRef]
- Mannani, N.; El Boujamaai, M.; Sifou, A.; Bennani, M.; El Adlouni, C.; Abdennebi, E.H.; Zinedine, A. Aflatoxins and ochratoxin A in dried fruits from Morocco: Monitoring, regulatory aspects, and exposure assessment. Regul. Toxicol. Pharmacol. 2023, 145, 105503. [Google Scholar] [CrossRef]
- Zebiri, S.; Mokrane, S.; Verheecke-Vaessen, C.; Choque, E.; Reghioui, H.; Sabaou, N. Occurrence of ochratoxin A in Algerian wheat and its milling derivatives. Toxin Rev. 2019, 38, 206–211. [Google Scholar] [CrossRef]
- Badji, T.; Durand, N.; Bendali, F.; Piro-Metayer, I.; Zinedine, A.; Ben Salah-Abbès, J.; Abbès, S.; Montet, D.; Riba, A.; Brabet, C. In vitro detoxification of aflatoxin B1 and ochratoxin A by lactic acid bacteria isolated from Algerian fermented foods. Biol. Control 2023, 179, 105181. [Google Scholar] [CrossRef]
- Ben Miri, Y.; Benabdallah, A.; Taoudiat, A.; Mahdid, M.; Djenane, D.; Tacer-Caba, Z.; Topkaya, C.; Simal-Gandara, J. Potential of essential oils for protection of Couscous against Aspergillus flavus and aflatoxin B1 contamination. Food Control 2023, 145, 109474. [Google Scholar] [CrossRef]
- Tantaoui-Elaraki, A.; Riba, A.; Oueslati, S.; Zinedine, A. Toxigenic fungi and mycotoxin occurrence and prevention in food and feed in northern Africa—A review. World Mycotoxin J. 2018, 11, 385–400. [Google Scholar] [CrossRef]
- Van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulations relating to mycotoxins in food. Anal. Bioanal. Chem. 2007, 389, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Zargar, M.; Rebouh, N.; Pakina, E.; Gadzhikurbanov, A.; Lyashko, M.; Ortskhanov, B. Impact of climate change on cereal production in the highlands of eastern Algeria. Res. Crops 2017, 18, 575–582. [Google Scholar] [CrossRef]
- Nguyen, P.A.; Strub, C.; Fontana, A.; Schorr-Galindo, S. Crop molds and mycotoxins: Alternative management using biocontrol. Biol. Control 2017, 104, 10–27. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Kabak, B. Occurrence of mycotoxins in dried fruits worldwide, with a focus on aflatoxins and ochratoxin A: A Review. Toxins 2023, 15, 576. [Google Scholar] [CrossRef]
- Riba, A.; Mokrane, S.; Mathieu, F.; Lebrihi, A.; Sabaou, N. Mycoflora and ochratoxin A producing strains of Aspergillus in Algerian wheat. Int. J. Food Microbiol. 2008, 122, 85–92. [Google Scholar] [CrossRef]
- Riba, A.; Bouras, N.; Mokrane, S.; Mathieu, F.; Lebrihi, A.; Sabaou, N. Aspergillus section Flavi and aflatoxins in Algerian wheat and derived products. Food Chem. Toxicol. 2010, 48, 2772–2777. [Google Scholar] [CrossRef]
- Yang, Y.; Bouras, N.; Yang, J.; Howard, R.J.; Strelkov, S.E. Mycotoxin production by isolates of Fusarium lactis from greenhouse sweet pepper (Capsicum annuum). Int. J. Food Microbiol. 2011, 151, 150–156. [Google Scholar] [CrossRef]
- Guezlane-Tebibel, N.; Bouras, N.; Mokrane, S.; Benayad, T.; Mathieu, F. Aflatoxigenic strains of Aspergillus section Flavi isolated from marketed peanuts (Arachis hypogaea) in Algiers (Algeria). Ann. Microbiol. 2013, 63, 295–305. [Google Scholar] [CrossRef]
- Riba, A.; Matmoura, A.; Mokrane, S.; Mathieu, F.; Sabaou, N. Investigations on aflatoxigenic fungi and aflatoxins contamination in some nuts sampled in Algeria. Afr. J. Microbiol. Res. 2013, 7, 4974–4980. [Google Scholar] [CrossRef]
- Redouane-Salah, S.; Morgavi, D.P.; Arhab, R.; Messaï, A.; Boudra, H. Presence of aflatoxin M1 in raw, reconstituted, and powdered milk samples collected in Algeria. Environ. Monit. Assess. 2015, 187, 375. [Google Scholar] [CrossRef]
- Yekkour, A.; Toumatia, O.; Meklat, A.; Verheecke, C.; Sabaou, N.; Zitouni, A.; Mathieu, F. Deoxynivalenol-producing ability of Fusarium culmorum strains and their impact on infecting barley in Algeria. World J. Microbiol. Biotechnol. 2015, 31, 875–881. [Google Scholar] [CrossRef]
- Yekkour, A.; Tran, D.; Arbelet-Bonnin, D.; Briand, J.; Mathieu, F.; Lebrihi, A.; Errakhi, R.; Sabaou, N.; Bouteau, F. Early events induced by the toxin deoxynivalenol lead to programmed cell death in Nicotiana tabacum cells. Plant Sci. 2015, 238, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Lahoum, A.; Verheecke-Vaessen, C.; Bouras, N.; Sabaou, N.; Mathieu, F. Taxonomy of mycelial actinobacteria isolated from Saharan soils and their efficiency to reduce aflatoxin B1 content in a solid-based medium. Ann. Microbiol. 2017, 67, 231–237. [Google Scholar] [CrossRef]
- Ait Mimoune, N.; Arroyo-Manzanares, N.; Gámiz-Gracia, L.; García-Campaña, A.M.; Bouti, K.; Sabaou, N.; Riba, A. Aspergillus section Flavi and aflatoxins in dried figs and nuts in Algeria. Food Addit. Contam. Part B 2018, 11, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Azzoune, N.; Mokrane, S.; Riba, A.; Bouras, N.; Verheecke, C.; Sabaou, N.; Mathieu, F. Contamination of common spices by aflatoxigenic fungi and aflatoxin B1 in Algeria. Qual. Assur. Saf. Crops Foods 2016, 8, 137–144. [Google Scholar] [CrossRef]
- Touati-Hattab, S.; Barreau, C.; Verdal-Bonnin, M.-N.; Chereau, S.; Richard-Forget, F.; Hadjout, S.; Mekliche, L.; Bouznad, Z. Pathogenicity and trichothecenes production of Fusarium culmorum strains causing head blight on wheat and evaluation of resistance of the varieties cultivated in Algeria. Eur. J. Plant Pathol. 2016, 145, 797–814. [Google Scholar] [CrossRef]
- Bouras, N.; Holtz, M.D.; Aboukhaddour, R.; Strelkov, S.E. Influence of nitrogen sources on growth and mycotoxin production by isolates of Pyrenophora tritici-repentis from wheat. Crop J. 2016, 4, 119–128. [Google Scholar] [CrossRef]
- Hadjout, S.; Chéreau, S.; Atanasova-Penichon, V.; Marchegay, G.; Mekliche, L.; Boureghda, H.; Richard-Forget, F. Phenotypic and biochemical characterization of new advanced durum wheat breeding lines from Algeria that show resistance to Fusarium head blight and to mycotoxin accumulation. J. Plant Pathol. 2017, 99, 671–680. [Google Scholar]
- Laraba, I.; Boureghda, H.; Abdallah, N.; Bouaicha, O.; Obanor, F.; Moretti, A.; Geiser, D.M.; Kim, H.-S.; McCormick, S.P.; Proctor, R.H.; et al. Population genetic structure and mycotoxin potential of the wheat crown rot and head blight pathogen Fusarium culmorum in Algeria. Fungal Genet. Biol. 2017, 103, 34–41. [Google Scholar] [CrossRef]
- Djaaboub, S.; Moussaoui, A.; Meddah, B.; Gouri, S.; Benyahia, K. Prevalence of mycoflora and Fusarium graminearum chemotype DON in wheat in Bechar province of South-Western Algeria. Acta Phytopathol. Entomol. Hung. 2020, 55, 11–26. [Google Scholar] [CrossRef]
- Ben Miri, Y.; Ariño, A.; Djenane, D. Study of antifungal, anti-aflatoxigenic, antioxidant activity and phytotoxicity of Algerian Citrus limon var. Eureka and Citrus sinensis var. Valencia essential oils. J. Essent. Oil Bear. Plants 2018, 21, 345–361. [Google Scholar] [CrossRef]
- Ben Miri, Y.; Djenane, D. Antifungal, anti-aflatoxigenic, antioxidant activity and in vivo efficacy of essential oil of the aerial parts of Thymus capitatus (L.) Hoffmanns & Link. Phytotherapie 2019, 17, 299–309. [Google Scholar] [CrossRef]
- Belasli, A.; Ben Miri, Y.; Aboudaou, M.; Aït Ouahioune, L.; Montañes, L.; Ariño, A.; Djenane, D. Antifungal, antitoxigenic, and antioxidant activities of the essential oil from laurel (Laurus nobilis L.): Potential use as wheat preservative. Food Sci. Nutr. 2020, 8, 4717–4729. [Google Scholar] [CrossRef]
- Mazrou, S.; Messaoudi, M.; Bega, S.; Akretche, D.E. Identification, purification and quantification of toxins “Ochratoxin A” in Algerian grape juice. Alger. J. Eng. Technol. 2019, 01, 002–010. [Google Scholar] [CrossRef]
- Mahdjoubi, C.K.; Arroyo-Manzanares, N.; Hamini-Kadar, N.; García-Campaña, A.M.; Mebrouk, K.; Gámiz-Gracia, L. Multi-mycotoxin occurrence and exposure assessment approach in foodstuffs from Algeria. Toxins 2020, 12, 194. [Google Scholar] [CrossRef]
- Mohammedi-Ameur, S.; Dahmane, M.; Brera, C.; Kardjadj, M.; Ben-Mahdi, M.H. Occurrence and seasonal variation of aflatoxin M1 in raw cow milk collected from different regions of Algeria. Veter World 2020, 13, 433–439. [Google Scholar] [CrossRef]
- Bouti, K.; Verheecke-Vaessen, C.; Mokrane, S.; Atika, M.; Djemouai, N.; Sabaou, N.; Mathieu, F.; Riba, A. Polyphasic characterization of Aspergillus section Flavi isolated from animal feeds in Algeria. J. Food Saf. 2019, 40, e12743. [Google Scholar] [CrossRef]
- Krouma, H.; Jaouani, A.; Mohamed Abdelhafid, H.; Cherfia, R.; Mosbah, A.; Kara Ali, M.; Chaouche, N.K. In vivo evaluation of aggressiveness, pathogenicity and patulin accumulation by three Penicillium expansum strains isolated from Algerian apples. South Asian J. Exp. Biol. 2020, 10, 464–479. [Google Scholar] [CrossRef]
- Khaldi, A.; Moussaoui, A.; Meddah, B. Mycotoxicological and physicochemical study of infant flour marketed in south-west of Algeria and anti-mycotoxin effect of the aqueous extract of Anethum graveolens L. J. Fundam. Appl. Sci. 2020, 12, 1172–1190. [Google Scholar] [CrossRef]
- Moussaoui, M.; Ziane, M.; Ben Braïek, O.; Moussaoui, A. Detection and preliminary identification of ochratoxins and aflatoxins produced by Aspergillus species isolated from coffee. Plant Arch. 2021, 21, 719–726. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20220164167 (accessed on 5 May 2024).
- Carbonell-Rozas, L.; Mahdjoubi, C.K.; Arroyo-Manzanares, N.; García-Campaña, A.M.; Gámiz-Gracia, L. Occurrence of ergot alkaloids in barley and wheat from Algeria. Toxins 2021, 13, 316. [Google Scholar] [CrossRef]
- Bouti, K.; Ait Mimoune, N.; Mokrane, S.; Djemouai, N.; Verheecke-Vaessen, C.; Mathieu, F.; Riba, A. Incidence of mycobiota and aflatoxin B1 in Algerian feed. Int. J. Postharvest Technol. Innov. 2022, 8, 125–144. [Google Scholar] [CrossRef]
- Saber, H.; Chebloune, Y.; Moussaoui, A. Molecular Characterization of Aspergillus flavus Strains Isolated from Animal Feeds. Pol. J. Microbiol. 2022, 71, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Medjdoub, A.-R.; Moussaoui, A.; Benmehdi, H. Toxigenic fungi and contamination by AFB1 in Algerian traditional foods markets. Eur. J. Biol. Res. 2023, 13, 81–93. [Google Scholar] [CrossRef]
- Redouane-Salah, S.; Messaï, A.; Djeghim, H. First report on the occurrence of aflatoxin B1 in coffee marketed in eastern Algeria. Int. J. Environ. Stud. 2023, 80, 1834–1842. [Google Scholar] [CrossRef]
- Jedidi, I.; Messaï, A.; Redouane-Salah, S.; Mebrek, S. Assessment of aflatoxin M1 levels in raw camel milk, cow milk and powdered milk in Algeria. Int. J. Environ. Stud. 2023, 80, 1843–1852. [Google Scholar] [CrossRef]
- Belasli, A.; Herrera, M.; Ariño, A.; Djenane, D. Occurrence and exposure assessment of major mycotoxins in foodstuffs from Algeria. Toxins 2023, 15, 449. [Google Scholar] [CrossRef]
- Laouni, C.; Hernández-Mesa, M.; Messai, A. Occurrence of emerging mycotoxins in chicken feed and eggs from Algeria. Biol. Sci. Dev. Biol. Eggs 2023, preprint. [Google Scholar] [CrossRef]
- Boudjaber, K.; Ben Miri, Y.; Amina, B.; Bennia, N.; Hamadi, C.; Soumati, B.; Djenane, D.; Simal-Gandara, J. Evaluation of Antifungal and anti-aflatoxin B1 efficacy of some crude extracts of Chamaerops humilis L. against Aspergillus flavus isolated from peanuts (Arachis hypogea L.). Food Control 2023, 152, 109858. [Google Scholar] [CrossRef]
- Ben Miri, Y.; Nouasri, A.; Herrera, M.; Djenane, D.; Ariño, A. Antifungal activity of menthol, eugenol and their combination against Aspergillus ochraceus and Aspergillus niger in vitro and in stored cereals. Foods 2023, 12, 2108. [Google Scholar] [CrossRef]
- Ben Miri, Y.; Nouasri, A.; Benabdallah, A.; Benslama, A.; Tacer-Caba, Z.; Laassami, A.; Simal-Gandara, J. Antifungal effects of selected menthol and eugenol in vapors on green coffee beans during long-term storage. Heliyon 2023, 9, e18138. [Google Scholar] [CrossRef] [PubMed]
- Belabed, I.; Hannane, A.; Amor, B.; Rouag, N. Fusarium species associated with wheat head blight disease in Algeria: Characterization and effects of triazole fungicides. Pestic. Phytomed. 2022, 37, 49–62. [Google Scholar] [CrossRef]
- Ait Issad, N.; Mimoune, N.; Ammari, C.; Hammouni, R.; Houari, C.; Khelef, D. Effects of a toxin binder and an organic acidifier on the zootechnical performance of broiler chickens. Vet. Stanica 2022, 53, 689. [Google Scholar] [CrossRef]
- Mimoune, N.; Houari, C.; Ammari, C.; Hammouni, R.; Ait Issad, N.; Khelef, D. Zootechnical, bacteriological, and histometrical effects of a combination mycotoxin binder-acidifier in broiler chickens. Vet. Stanica 2023, 54, 13. [Google Scholar] [CrossRef]
- Houari, C.; Mimoune, N.; Ait-Issad, N.; Kadri, A.Y.; Aiza, A.; Khelef, D. Impact of a feed additive (acidifier and toxin-binder) in milk production in dairy cattle. Vet. Stanica 2024, 55, 267. [Google Scholar] [CrossRef]
- Fernane, F.; Sanchis, V.; Marín, S.; Ramos, A.J. First report on mould and mycotoxin contamination of pistachios sampled in Algeria. Mycopathologia 2010, 170, 423–429. [Google Scholar] [CrossRef]
- Mohammedi, D.; Mohammedi, S.; Kardjadj, M. Prévalence des fumonisines dans les aliments pour volaille en Algérie. Ressour. Aliment. Alim. 2021, 74, 207–211. [Google Scholar] [CrossRef]
- Mohammedi, D.; Mohammedi, S. Ochratoxine A dans les aliments, les fluides et les tissus de volaille en Algérie. Rev. Elev. Med. Vet. Pays Trop. 2014, 67, 35–39. [Google Scholar] [CrossRef]
- Mendes, M.I.; Cunha, S.C.; Rebai, I.; Fernandes, J.O. Algerian Workers’ Exposure to mycotoxins—A biomonitoring study. Int. J. Environ. Res. Public Health 2023, 20, 6566. [Google Scholar] [CrossRef]
- Piotrowska, M. Microbiological decontamination of mycotoxins: Opportunities and limitations. Toxins 2021, 13, 819. [Google Scholar] [CrossRef] [PubMed]
- BO Arrêté Conjoint Du Ministre de L’agriculture et de La Pêche Maritime et Du Ministre de La Santé No 1643-16 Du 23 Chaabane 1437 (30 May 2016) Fixant Les Limites Maximales Autorisées Des Contaminants Dans Les Produits Primaires et Les Produits Alimentaires. Available online: https://www.fenagri.org/files/documents/60bdfb997e3b8515847168.pdf (accessed on 5 May 2024).
- Monyo, E.S.; Njoroge, S.M.C.; Coe, R.; Osiru, M.; Madinda, F.; Waliyar, F.; Thakur, R.P.; Chilunjika, T.; Anitha, S. Occurrence and distribution of aflatoxin contamination in groundnuts (Arachis hypogaea L.) and population density of aflatoxigenic Aspergilli in Malawi. Crop Prot. 2012, 42, 149–155. [Google Scholar] [CrossRef]
- Kouadio, J.H.; Lattanzio, V.M.T.; Ouattara, D.; Kouakou, B.; Visconti, A. Assessment of mycotoxin exposure in Côte D’ivoire (Ivory Coast) through multi-biomarker analysis and possible correlation with food consumption patterns. Toxicol. Int. 2014, 21, 248–257. [Google Scholar] [CrossRef]
- Shephard, G.S.; Kimanya, M.E.; Kpodo, K.A.; Gnonlonfin, G.J.B.; Gelderblom, W.C.A. The risk management dilemma for fumonisin mycotoxins. Food Control 2013, 34, 596–600. [Google Scholar] [CrossRef]
- PACA Strengthening Aflatoxin Control in Nigeria: Policy Recommendations Country-Led Situation Analysis; Final Report; Partnership for Aflatoxin Control in Africa (PACA), The African Union Commission: Addis Ababa, Ethiopia, 2018.
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, L119, 103–186.
- FAO. Worldwide Regulations for Mycotoxins in Food and Feed in 2003; Food and Agricultural Organisation (FAO) Food and Nutrition Paper 81; FAO: Rome, Italy, 2004. [Google Scholar]
- PACA Strengthening Aflatoxin Control in Uganda: Policy Recommendations Country-Led Situation Analysis; Final Report; Partnership for Aflatoxin Control in Africa (PACA), The African Union Commission: Addis Ababa, Ethiopia, 2017.
- Singh, J.; Mehta, A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci. Nutr. 2020, 8, 2183–2204. [Google Scholar] [CrossRef] [PubMed]
Mycotoxins | Agricultural Commodity | Concentration | N (Samples) | Reference |
---|---|---|---|---|
OTA | Wheat | 0.21–27.31 μg/kg | 39 | [9] |
OTA | Semolina | 0.16–34.75 μg/kg | 29 | [9] |
OTA | Flour | 0.16–34.75 μg/kg | 13 | [9] |
DON | Wheat | 5000–15000 µg/kg | 70 | [32] |
FB1 | Maize | 289–42.143 μg/kg | 30 | [37] 3 |
FB2 | Maize | 27.5–8603 μg/kg | 30 | [37] 3 |
T–2 | Maize | 24.6–25.7 μg/kg | 30 | [37] 3 |
DON | Maize | 47.6–2055 μg/kg | 30 | [37] 3 |
ZEN | Maize | 20.4–579 μg/kg | 30 | [37] 3 |
F–X | Maize | 177–477 μg/kg | 30 | [37] 3 |
CIT | Maize | 8.6–273 μg/kg | 30 | [37] 3 |
BEA | Maize | 0.85–31.4 μg/kg | 30 | [37] 3 |
ENNA1 | Maize | 11.5–103 μg/kg | 30 | [37] 3 |
ENNB1 | Maize | 15.0–107 μg/kg | 30 | [37] 3 |
HT–2 | Wheat | 8.4–36.7 μg/kg | 30 | [37] 3 |
DON | Wheat | 68.3–1363 μg/kg | 30 | [37] 3 |
ZEN | Wheat | 9.6–295 μg/kg | 30 | [37] 3 |
F–X | Wheat | 139–159 μg/kg | 30 | [37] 3 |
OTA | Wheat | 20–92 μg/kg | 30 | [37] 3 |
CIT | Wheat | 9.8–32.3 μg/kg | 30 | [37] 3 |
STE | Wheat | 0.6–1.3 μg/kg | 30 | [37] 3 |
BEA | Wheat | 2.8–486 μg/kg | 30 | [37] 3 |
ENNA | Wheat | 8.4–87.6 μg/kg | 30 | [37] 3 |
ENNA1 | Wheat | 4.0–395 μg/kg | 30 | [37] 3 |
ENNB | Wheat | 1.2–5288 μg/kg | 30 | [37] 3 |
ENNB1 | Wheat | 19.5–4569 μg/kg | 30 | [37] 3 |
Ergot alcaloids | Wheat | 3.66–76.0 μg/kg | 41 | [43] |
Ergot alcaloids | Barley | 17.8–53.9 μg/kg. | 43 | [43] |
AFB1 | Wheat grain stored in silo 1 | 0.13–37.42 μg/kg | 108 | [18] |
AFB1 | Pre-harvest wheat grain 2 | 0.21-13.96 μg/kg | 108 | [18] |
AFB1 | Semolina | 1.18 μg/kg | 108 | [18] |
AFB1 | Bran | 3.37 μg/kg | 108 | [18] |
OTA | Wheat grain stored in silo 1 | 0.21- 3.91 μg/kg | 30 | [17] |
OTA | Pre-harvest wheat grain 2 | 0.45–1.65 μg/kg | 30 | [17] |
AFB1 | Roasted hazelnuts | 0.20–2.81 μg/kg | 88 | [21] |
AFB1 | Shelled almonds | 1.65–4.00 μg/kg | 8 | [21] |
AFB1 | Shelled peanuts | 0.34–25.82 μg/kg | 8 | [21] |
AFB1 | Pistachio | 0.28–8.72 μg/kg | 8 | [21] |
AFB1 | Unshelled walnuts | 0.20–6.34 μg/kg | 8 | [21] |
AFs | Pistachios | 0.4–0.7 μg/kg | 31 | [58] |
OTA | Pistachios | 170 μg/kg | 31 | [58] |
OTA | Cereal-based products | 0.15 μg/kg | 71 | [49] |
DON | Cereal-based products | 90–123 μg/kg | 71 | [49] |
AFs | Dried figs, dates, and bradj pastries | 0.03–0.49 μg/kg. | 62 | [49] |
AFM1 | Raw milk | 9–103 ng/L | 47 | [22] |
AFM1 | Powdered milk | 20.34 ng/L | 13 | [48] |
AFM1 | Cow milk | 5.8 ng/L | 21 | [48] |
AFB1 | Spices | 0.10–26.50 μg/kg 0.10-25.82 μg/kg | 44 | [27] |
AFs | Couscous | 21.75 μg/kg | 4 | [46] |
OTA | Grapes | <30 ng/L | 30 | [36] |
ENNB1 | Poultry feed, eggs | 3.6–41.5 μg/kg | 35 | [50] |
BEA | Poultry feed | 12 μg/kg | 10 | [50] |
AFs | Coffee | 1.004-1.167 μg/kg | 43 | [47] |
AFs | Animal feed | 0.34-171.06 μg/kg | 101 | [44] |
FB1 | Poultry feed | <400–>3000 μg/kg | 69 | [59] |
OTA | Poultry feed | 0.02–63 μg/kg | n.r. | [60] |
OTA | Poultry organs | 570–9730 ng/L | n.r. | [60] |
DON | Wheat | 5000–15000 µg/kg | 70 | [32] |
AFM1 | Raw cow milk | 95.59–557.22 ng/L | 84 | [38] |
AFs | Peanuts | 0.71–25.50 μg/kg | 50 | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Miri, Y.; Chentir, I.; Taoudiat, A.; Benabdallah, A.; Herrera, M. Mycotoxin Research in Algeria: A Comprehensive Review of Trends, Challenges, and Future Directions. Toxins 2025, 17, 492. https://doi.org/10.3390/toxins17100492
Ben Miri Y, Chentir I, Taoudiat A, Benabdallah A, Herrera M. Mycotoxin Research in Algeria: A Comprehensive Review of Trends, Challenges, and Future Directions. Toxins. 2025; 17(10):492. https://doi.org/10.3390/toxins17100492
Chicago/Turabian StyleBen Miri, Yamina, Imene Chentir, Aldjia Taoudiat, Amina Benabdallah, and Marta Herrera. 2025. "Mycotoxin Research in Algeria: A Comprehensive Review of Trends, Challenges, and Future Directions" Toxins 17, no. 10: 492. https://doi.org/10.3390/toxins17100492
APA StyleBen Miri, Y., Chentir, I., Taoudiat, A., Benabdallah, A., & Herrera, M. (2025). Mycotoxin Research in Algeria: A Comprehensive Review of Trends, Challenges, and Future Directions. Toxins, 17(10), 492. https://doi.org/10.3390/toxins17100492